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1  Maps with(out) tubes ...

Definition
Planar maps and substitution

Planar 1-cut lemma
Higher topologies



A	
 map	
 is	
 a	
 discrete	
 surface	
 obtained	
 by	
 gluing	
 along	
 edges

faces	
 with	
 topology	
 of	
 a	
 disk

weight
per	
 vertex
t

t11t33t
2
4t5t

2
6weight	
 =	
 

k

weight
tk
(k ≥ 1)

1. Maps with(out) tubes Definition of a map



weight	
 =	
 

A	
 map	
 with	
 tubes	
 is	
 a	
 discrete	
 surface	
 obtained	
 by	
 gluing	
 along	
 edges

faces	
 with	
 topology	
 of	
 a	
 disk

weight

weight

or	
 with	
 topology	
 of	
 a	
 cylinder

tk

k

k1

k2

(k ≥ 1)

(k1 + k2 ≥ 1)

weight per	
 vertext
t22γ3t1t

2
4t5t6t4,8t4,5t6,1

γtk1,k2

1. Maps with(out) tubes Definition of a map with tubes



1. Maps with(out) tubes Planar maps and substitution

Planar	
 maps	
 are	
 those	
 which	
 can	
 be	
 embedded	
 in	
 a	
 sphere.

=	
 generating	
 series	
 of	
 maps
	
 	
 	
 with	
 1	
 marked,	
 rooted	
 face	
 of	
 perimeter	
 �

T�[(tk)k; (tk1,k2)k1,k2 ]

Planar−→

Notion	
 of
inside/outside	
 a	
 tube

Planar	
 maps	
 with	
 tubes
have	
 a	
 nested	
 structure

−→

� = 15

root



1. Maps with(out) tubes Planar maps and substitution

Planar	
 maps	
 with	
 tubes	
 have	
 a	
 nested	
 structure

with	
 substitution	
 of	
 tubes	
 (rooted	
 inside)

map	
 with	
 large	
 faces	
 (gasket)

stuffed	
 with	
 rooted	
 maps	
 with	
 tubes



1. Maps with(out) tubes Planar maps and substitution

Planar	
 maps	
 with	
 tubes	
 have	
 a	
 nested	
 structure

rooted
inside tubes stuffed	
 with	
 rooted	
 maps

with	
 tubes

with	
 substitution	
 of	
 

Counting	
 planar	
 maps	
 with	
 tubes	
 is	
 reduced	
 to	
 counting	
 planar	
 maps	
 −→

T�[(tk)k; (tk1,k2)k1,k2 ] = T�[(t̃k)k; 0]

t̃k = tk + γ
�

m

mtk,mTm[(tn)n; (tn1,n2)n1,n2 ]



1. Maps with(out) tubes Admissible weights

Definitions

(tk)k non-negative	
 is	
 admissible	
 when	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ,
(generating	
 series	
 of	
 pointed	
 rooted	
 planar	
 maps)

t∂tT�[(tk)k; 0] < +∞

(tk)k real-valued	
 is	
 admissible	
 when	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 is	
 admissible(|tk|)k

∀l ≥ 1t,

|t|,t,

(tk)kt, , γ, tk1,k2 is	
 admissible	
 when	
 is	
 admissiblet, (t̃k)k



1. Maps with(out) tubes Planar 1-cut lemma

Definitions

(tk)k non-negative	
 is	
 admissible	
 when	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ,
(generating	
 series	
 of	
 pointed	
 rooted	
 planar	
 maps)

t∂tT�[(tk)k; 0] < +∞

(tk)k real-valued	
 is	
 admissible	
 when	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 is	
 admissible(|tk|)k

∀l ≥ 1t,

|t|,t,

(tk)kt, , γ, tk1,k2 is	
 admissible	
 when	
 is	
 admissiblet, (t̃k)k

Planar	
 1-cut	
 lemma

If	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 is	
 admissible,	
 there	
 exists	
 (tk)kt, , γ, tk1,k2

✹	
 is	
 holomorphic	
 in	
 

W 0
1 (x) =

� t

x
+
�

�≥1

T�[(tk)k; (tk1,k2)k1,k2 ]

x�+1

�
dxso	
 that	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 

C \ [a, b]
✹	
 has	
 a	
 discontinuity	
 on	
 ]a, b[
✹	
 remains	
 bounded

a, b ∈ R

GB,	
 Bouttier,	
 Guitter	
 (12)Bousquet-Mélou	
 (02),	
 



1. Maps with(out) tubes Analytic continuation

conformal	
 mapping

−→

z ∈ C \Dx ∈ C \ [a, b]

C

Fact ω0
1(z) = W 0

1 (x(z)) can	
 be	
 continued	
 in	
 a	
 neighborhood	
 	
 	
 	
 of	
 C

z ∈ U

−→

analytic	
 continuation

C

α β α β

U



1. Maps with(out) tubes Analytic continuation

conformal	
 mapping

−→

z ∈ C \Dx ∈ C \ [a, b]

C

z ∈ U

a b
α β

	
 determines	
 a	
 Riemann	
 surface,
	
 on	
 which	
 it	
 can	
 be	
 seen	
 as	
 an	
 analytic	
 1-form

	
 called	
 spectral	
 curveW 0
1 (x)

−→

analytic	
 continuation

exchanging	
 interior/exterior	
 of	
 
z �→ ι(z)We	
 have	
 an	
 involution	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 so	
 that

C
x(z) = x(ι(z))

ι
ι

ι
ιι ι

Fact ω0
1(z) = W 0

1 (x(z)) can	
 be	
 continued	
 in	
 a	
 neighborhood	
 	
 	
 	
 of	
 CU



	
 called	
 spectral	
 curve

1. Maps with(out) tubes Higher topologies

	
 A	
 map	
 with(out)	
 tubes	
 has	
 genus	
 g	
 if	
 
	
 it	
 is	
 connected	
 and	
 can	
 be	
 embedded	
 in	
 

	
 g	
 handles

We	
 cannot	
 speak	
 of	
 nesting	
 for	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 !	
 g > 0

Rather	
 use	
 Tutte	
 bijective	
 decomposition	
 of	
 maps	
 to	
 establish	
 functional	
 relations

We	
 define	
 the	
 generating	
 series	
 

W g
n(x1, . . . , xn) =

�

�1,...,�n≥1

� n�

i=1

dxi

x�i+1
i

�
×

generating	
 series	
 of	
 genus	
 g	
 maps
with	
 rooted	
 marked	
 faces
of	
 perimeters	
 	
 
{

�1, . . . , �n
{

and	
 we	
 would	
 like	
 to	
 compute	
 them	
 ...

+	
 a	
 good	
 deal	
 of	
 complex	
 analysis	
 ...



1. Maps with(out) tubes Higher topologies

W g
n(x1, . . . , xn) =

�

�1,...,�n≥1

� n�

i=1

dxi

x�i+1
i

�
×

generating	
 series	
 of	
 genus	
 g	
 maps
with	
 rooted	
 marked	
 faces
of	
 perimeters	
 	
 
{

�1, . . . , �n
{

1-cut	
 lemma

If	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 is	
 admissible,	
 then	
 	
 (tk)kt, , γ, tk1,k2

✹	
 is	
 holomorphic	
 in	
 C \ [a, b]
✹	
 has	
 a	
 discontinuity	
 when	
 

✹	
 can	
 be	
 analytically	
 continued	
 to
	
 	
 	
 on	
 the	
 same	
 Riemann	
 surface

W g
n(x1, . . . , xn)

ωg
n(z1, . . . , zn)

It	
 can	
 be	
 computed	
 by	
 a	
 recursion	
 on	
 2g	
 -	
 2	
 +	
 n
which	
 takes	
 a	
 universal	
 form

Eynard	
 (06)for	
 maps

for	
 maps	
 with	
 tubes GB,	
 Eynard,	
 Orantin	
 (13)

xi ∈ [a, b]



=

1. Maps with(out) tubes Topological recursion

z1

z2

zn
ωg
n(z1, . . . , zn) =

the	
 involution	
 

z ∈ U

ι
ι

ι
ιι ι

ι

It	
 can	
 be	
 computed	
 by	
 a	
 recursion	
 of	
 topological	
 nature.

z1

z2

zn

Res
z→α,β

− 1
2

� z
ι(z) ω

0
2(·, z2)

ω0
1(z)− ω0

1(ι(z))
· · ·

z

ι(z)

z1 · · ·

g

g

z2

zn
z

ι(z)

z1 g − 1= +
z

ι(z)

z1

zj , j ∈ J

zj , j /∈ J

h

g − h

�

J,h
disks	
 excluded



1. Maps with(out) tubes Topological recursion

	
 	
 	
 	
 	
 	
 can	
 be	
 computed	
 by	
 a	
 universal	
 recursion	
 of	
 topological	
 nature

but	
 the	
 combinatorial	
 interpretation	
 of	
 the	
 recursion	
 is	
 not	
 known	
 ...

ωg
n(ι(z), z2, . . . , zn) ??

ωg
n

	
 	
 	
 	
 	
 if	
 one	
 knows	
 	
 	
 	
 	
 	
 =	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 and	
 	
 	
 	
 	
 	
 	
 =	
 ω0
1 ω0

2

Definition

−→ g

The	
 topological	
 recursion	
 is	
 the	
 algorithm

initial	
 data output

n, g ≥ 0

Eynard,	
 Orantin	
 (07)

( (ωg
n =

ω0
1 =

ω0
2 =



2  ... and formal matrix
      models

Relation to maps
Multidimensional integrals ...

... and their asymptotics



2. Formal matrix models

Generating	
 series	
 of	
 maps	
 can	
 be	
 represented	
 by	
 formal	
 matrix	
 integrals

the	
 generating	
 series	
 of	
 faces

Brézin,	
 Itzykson,	
 Parisi,	
 Zuber	
 (78)

the	
 gaussian	
 measure	
 on
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 hermitian	
 matrices dµ(M) = dM e−NTrM2/2t
N ×N

D(x) =
N

t

�

k

tk
k
xk

if	
 we	
 introduce

t, tkthen,	
 the	
 formal	
 series	
 in	
 	
 	
 	
 	
 	
 	
 has	
 a	
 well-defined	
 decomposition

µ
�
eTrD(M)

�n
i=1 Tr

dxi
xi−M

�

c

µ
�
eTrD(M)

� =
�

g≥0

N2−2g−n W g
n(x1, . . . , xn)

generating	
 series	
 of	
 maps
of	
 genus	
 g	
 with	
 n	
 rooted	
 marked	
 faces

... and maps



2. Formal matrix models

Generating	
 series	
 of	
 maps	
 with	
 tubes	
 have	
 a	
 similar	
 representation

with	
 topology	
 of	
 a	
 disk

reformulation	
 of	
 Gaudin,	
 Mehta,	
 Kostov	
 (90s)

D(x) =
N

t

�

k

tk
k
xk

t, tkthen,	
 the	
 formal	
 series	
 in	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 has	
 a	
 well-defined	
 decomposition

generating	
 series	
 of	
 maps	
 with	
 tubes
of	
 genus	
 g	
 with	
 n	
 rooted	
 marked	
 faces

if	
 we	
 introduce	
 the	
 generating	
 series	
 of	
 faces

with	
 topology	
 of	
 a	
 cylinder C(x, y) =
γ

t

�

k1,k2

tk1,k2

2k1k2
xk1yk2

, γ, tk1,k2

µ
�
eTrD(M)+TrC(M⊗1N ,1N⊗M)

�n
i=1 Tr

dxi
xi−M

�

c

µ
�
eTrD(M)+TrC(M⊗1N ,1N⊗M)

� =
�

g≥0

N2−2g−n W g
n(x1, . . . , xn)

... and maps with tubes



2. Formal matrix models

the	
 integrals	
 over	
 M	
 reduces	
 to	
 an	
 integral	
 over	
 its	
 eigenvalues

µ
�
eTrD(M)+TrC(M⊗1N ,1N⊗M)

�

U(N)	
 invariant	
 measures	
 :

e.g.	
 the	
 partition	
 function

=
Vol(U(N))

N !(2π)N

�

RN

N�

i=1

dλie
−Nλ2

i
2t +D(λi)+C(λi,λi)

�

1≤i<j≤N

(λi − λj)
2 e2C(λi,λj)

arbitrary	
 two-point	
 interaction
vanishing	
 like	
 a	
 square
at	
 short	
 distance

as	
 presented	
 for	
 formal	
 integrals

Multidimensional integrals



2. Formal matrix models

K	
 non-vanishing

Multidimensional integrals

� N�

i=1

dλie
−NV (λi)

�

1≤i<j≤N

(λi − λj)
2 R(λi, λj)A	
 summary	
 on	
 the	
 large	
 N	
 expansion	
 of

formal	
 integral	
 (	
 	
 	
 	
 	
 	
 	
 combinatorics,	
 1/N	
 expansion,	
 1-cut	
 lemma)−→

cv	
 integral	
 +	
 1-cut	
 +	
 assumptions

K	
 =	
 1	
 	
 	
 	
 Ambjørn,	
 Makeenko,	
 Chekhov,	
 Kristjansen	
 (90s),	
 Eynard	
 (04)

K	
 ≠	
 1	
 	
 	
 	
 GB,	
 Eynard,	
 Orantin	
 (13)

K	
 =	
 1	
 	
 	
 	
 Albeverio,	
 Pastur,	
 Shcherbina	
 (00),	
 Ercolani,	
 McLaughlin	
 (04)
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 GB,	
 Guionnet	
 (11)

K	
 ≠	
 1	
 	
 	
 GB,	
 Guionnet,	
 Kozlowski	
 (in	
 progress)

−→ 1/N	
 expansion

Topological
recursion

cv	
 integral	
 +	
 several	
 cuts	
 +	
 assumptions

K	
 =	
 1	
 	
 	
 	
 heuristics	
 :	
 Bonnet,	
 David,	
 Eynard	
 (00),	
 Eynard	
 (07)
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 proof	
 :	
 GB,	
 Guionnet	
 (13)

−→ 1/N	
 expansion

K	
 ≠	
 1	
 	
 	
 GB,	
 Guionnet,	
 Kozlowski	
 (in	
 progress)

Topological
recursion
with nodes
(see	
 later	
 ...)

K(λi, λj)



3  Introduction to knots

Definition, classification

Knot invariants
Asymptotics and why should we care ?

Imite	
 le	
 moins	
 possible	
 les	
 hommes	
 dans	
 leur	
 
énigmatique	
 maladie	
 de	
 faire	
 des	
 nœuds.

René	
 Char,	
 Rougeurs	
 des	
 matinaux



3. Introduction to knots

A	
 knot	
 is	
 an	
 isotopy	
 class	
 of	
 proper	
 embedding	
 of	
 a	
 circle	
 in	
 S3

Word	
 in	
 the	
 braid	
 group Tubular	
 neighborhood
of	
 a	
 knot	
 	
 	
 	
 2d	
 projection	
 of	
 a	
 knot	
 ↔

1

2

3

1

2

3

Example

figure-eight
knot

unknot

Definition



3. Introduction to knots

Knots	
 are	
 complicated	
 (as	
 much	
 as	
 arithmetic	
 in	
 	
 	
 	
 is	
 ...)Z

There	
 exist	
 infinitely	
 many	
 prime	
 knots,	
 which	
 fall	
 in	
 3	
 families

✹	
 (P,Q)	
 torus	
 knots

✹	
 hyperbolic	
 knots

✹	
 satellite	
 knots
(uncharted	
 territory)

admits	
 a	
 complete	
 hyperbolic	
 metricS3 \K

Classification of knots

K



3. Introduction to knots

Knots	
 are	
 complicated	
 (as	
 much	
 as	
 arithmetic	
 in	
 	
 	
 	
 is	
 ...)Z

colored	
 HOMFLY	
 polynomial

✹	
 distinguishing	
 two	
 knots

Hard	
 algorithmic	
 problems	
 :

✹	
 unknotting	
 number

For	
 any	
 compact	
 Lie	
 group	
 	
 	
 	
 	
 ,	
 irreducible	
 representation	
 	
 	
 	
 ,G R

construction	
 of	
 (computable)	
 knot	
 invariants	
 to	
 give	
 partial	
 answers−→

one	
 can	
 construct	
 an	
 invariant	
 using	
 representations	
 of	
 quantum	
 groups

WK(G,R;q)
knot

K �−→ ∈ Z[q, q−1]

behaving	
 nicely	
 under	
 geometric	
 operations	
 (gluings,	
 cabling,	
 ...)

Knot invariants



3. Introduction to knots

colored	
 HOMFLY	
 polynomial

For	
 any	
 compact	
 Lie	
 group	
 	
 	
 	
 	
 ,	
 irreducible	
 representation	
 	
 	
 	
 ,G R

WK(G,R;q)
knot

K �−→ ∈ Z[q, q−1]

behaving	
 nicely	
 under	
 geometric	
 operations	
 (gluings,	
 cabling,	
 ...)

G = SU(2) Jones	
 polynomialR  =

R  = · · ·
(m	
 -	
 1)	
 boxes

m-th	
 colored	
 Jones	
 polynomial	
 =JK,m(q)

but	
 in	
 general	
 no	
 closed	
 formulas	
 ...

one	
 can	
 construct	
 an	
 invariant	
 using	
 representations	
 of	
 quantum	
 groups

Knot invariants

Junknot
m (q) =

qm − q−m

q − q−1

J8−knot
m (q) =

qm − q−m

q − q−1

�m−1�

k=0

(q2)k(1/q
2)k

�



3. Introduction to knots

t = N ln(q)

has	
 nothing	
 to	
 do	
 with	
 the	
 topic	
 of	
 this	
 talk

Asymptotics of knot invariants

Enumeration	
 of	
 knots	
 by	
 matrix	
 model	
 techniques	
 

For	
 a	
 given	
 knot

Zinn-Justin,	
 Zuber

K
WK(G,R;q) when

✹	
 G = SU(N) N 

R = fixed	
 Young	
 tableau

→ ∞

fixed

(theory	
 of	
 LMO	
 invariants)

we	
 would	
 like	
 to	
 compute	
 the	
 asymptotic	
 expansion	
 of	
 

✹	
 G = SU(2) m → ∞
fixedR  = · · ·

(m	
 -	
 1)	
 boxes

q → 1q 

q → 1q 

u = m ln(q)



3. Introduction to knots

t = N ln(q)

Asymptotics of knot invariants

For	
 a	
 given	
 knot K
WK(G,R;q) when

✹	
 G = SU(N) N 

R = fixed	
 Young	
 tableau

→ ∞

fixed

(theory	
 of	
 LMO	
 invariants)

we	
 would	
 like	
 to	
 compute	
 the	
 asymptotic	
 expansion	
 of	
 

✹	
 G = SU(2) m → ∞
fixedR  = · · ·

(m	
 -	
 1)	
 boxes

q → 1q 

q → 1q 

u = m ln(q)

Theorem	
 :	
 for	
 torus	
 knots,	
 by	
 the4.

Conjecture	
 :	
 for	
 hyperbolic	
 knots,	
 by	
 the5.

topological recursion

topological recursion
with nodes



3. Introduction to knots Why should we care ?

✹	
 G = SU(2) m → ∞

fixedR  = · · ·
(m	
 -	
 1)	
 boxes

q → 1q 

u = m ln(q)

The	
 interest	
 about	
 asymptotics	
 of	
 knot	
 invariants	
 started	
 from

Volume	
 conjecture Kashaev	
 (98),	
 H.	
 Murakami	
 (00)

If	
 K	
 is	
 a	
 hyperbolic	
 knot,	
 

Algebraic
construction

Geometric
information

−→

Klim
m→∞

2π

m
ln
��J ,m(q = e2iπ/m)

�� = Volume(S3 \K)K



3. Introduction to knots Why should we care ?

✹	
 G = SU(2) m → ∞

fixedR  = · · ·
(m	
 -	
 1)	
 boxes

q → 1q 

u = m ln(q)

The	
 interest	
 about	
 asymptotics	
 of	
 knot	
 invariants	
 started	
 from

Volume	
 conjecture Kashaev	
 (98),	
 H.	
 Murakami	
 (00)

If	
 K	
 is	
 a	
 hyperbolic	
 knot,	
 

Other	
 conjectures other	
 values	
 of	
 	
 	
 	
 	
 and	
 asymptotic	
 expansion Gukov	
 (04)

Zagier	
 et	
 al.	
 (09)

Computation	
 and	
 unified	
 understanding	
 of	
 those	
 properties	
 ?
Relation	
 to	
 other	
 fields	
 (counting	
 surfaces	
 ...)	
 ?

u
arithmeticity,	
 modularity,	
 ...

Klim
m→∞

2π

m
ln
��J ,m(q = e2iπ/m)

�� = Volume(S3 \K)K



4  Torus knots and 

Definition, classification

Knot invariants
Asymptotics and why should we care ?

W(G,R)

(There	
 is	
 a	
 pun	
 hidden	
 in	
 this	
 slide)



principal	
 bundle	
 overG

4. Torus knots and Chern-Simons theoryW(G,R)

WK(G,R;q)
can	
 be	
 computed	
 as	
 an	
 observable	
 in	
 Chern-Simons	
 theory	
 in Witten	
 (89)

=	
 section	
 of	
 a	
 

S3

A S3

CS	
 theory	
 =	
 quantum	
 field	
 theory	
 with	
 measure

If	
 	
 	
 	
 	
 is	
 a	
 loop	
 in	
 	
 C

µ
�

dµCS[A] = DA exp
�
− 1

ln q

�
A ∧ dA+

2

3
A ∧A ∧A

��

Fact S3

holonomy	
 of	
 	
 	
 	
 	
 along	
 	
 	
 	
 	
 	
 ARTr
�

C
��

is	
 a	
 topological	
 invariant

and	
 coincides	
 with	
 WK(G,R;q)



G = SU(N)

4. Torus knots and The case of torus knotsW(G,R)

For	
 torus	
 knots,	
 the	
 path	
 integral	
 reduces	
 to	
 a	
 finite	
 dimensional	
 integral	
 !

(exact	
 saddle	
 point) Rozansky	
 (98),	
 Mariño	
 (02),	
 Beasley,	
 Witten	
 (07),	
 Kállen	
 (09)

K(x, y) =
sinh

�x−y
2P

�
�x−y

2P

�
sinh

�x−y
2Q

�
�x−y

2Q

�with	
 

t = N ln(q)

W(SU(N),R;q)and	
 the	
 knot	
 invariants	
 are	
 R

K = 

dµP,Q
N =

N�

i=1

dλi e
−Nλ2

i /2PQt
�

1≤i<j≤N

(λi − λj)
2K(λi, λj)

=
µP,Q
N

�
Schur (eλ1 , . . . , eλN )

�

µP,Q
N [1]



4. Torus knots and The case of torus knotsW(G,R)

K(x, y) =
sinh

�x−y
2P

�
�x−y

2P

�
sinh

�x−y
2Q

�
�x−y

2Q

�with	
 

W(SU(N),R;q)and	
 the	
 knot	
 invariants	
 are	
 R

dµP,Q
N =

N�

i=1

dλi e
−Nλ2

i /2PQt
�

1≤i<j≤N

(λi − λj)
2K(λi, λj)

=
µP,Q
N

�
Schur (eλ1 , . . . , eλN )

�

µP,Q
N [1]

SchurR

It	
 is	
 convenient	
 to	
 use	
 another	
 basis	
 of	
 symmetric	
 functions

Wn(x1, . . . , xn) =
µP,Q
N

��n
i=1 Tr

dxi

xi−eM/PQ

�
c

µP,Q
N [1]

←→ power	
 sums

and	
 form	
 a	
 generating	
 series	
 of	
 expectation	
 values	
 of	
 power	
 sums

M = diag(eλ1 , . . . , eλN )



There	
 is	
 an	
 explicit	
 formula	
 for	
 	
 	
 	
 	
 	
 	
 and	
 

4. Torus knots and SU(N) at large NW(G,R)

K(x, y) =
sinh

�x−y
2P

�
�x−y

2P

�
sinh

�x−y
2Q

�
�x−y

2Q

�with	
 

dµP,Q
N =

N�

i=1

dλi e
−Nλ2

i /2PQt
�

1≤i<j≤N

(λi − λj)
2K(λi, λj)

Wn(x1, . . . , xn) =
µP,Q
N

��n
i=1 Tr

dxi

xi−eM/PQ

�
c

µP,Q
N [1]

We	
 would	
 like	
 to	
 compute

Theorem
prediction,	
 check	
 :	
 Brini,	
 Eynard,	
 Mariño	
 (11)
proof	
 :	
 GB,	
 Eynard,	
 Orantin	
 (13)

There	
 is	
 a	
 large	
 N	
 expansion✹	
 Wn =
�

g≥0 N
2−2g−n W g

n

Assume	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 fixed	
 t = N ln q > 0

✹	
 

W g
n have	
 1-cut	
 	
 	
 	
 	
 	
 	
 ,	
 and	
 are	
 computed	
 by	
 the	
 topological	
 recursion	
 [a, b]✹	
 

W 0
1 W 0

2



=

Reminder: topological recursion 

z1

z2

zn
ωg
n(z1, . . . , zn) =

the	
 involution	
 

z ∈ U

ι
ι

ι
ιι ι

ι

It	
 can	
 be	
 computed	
 by	
 a	
 recursion	
 of	
 topological	
 nature.

z1

z2

zn

Res
z→α,β

− 1
2

� z
ι(z) ω

0
2(·, z2)

ω0
1(z)− ω0

1(ι(z))
· · ·

z

ι(z)

z1 · · ·

g

g

z2

zn
z

ι(z)

z1 g − 1= +
z

ι(z)

z1

zj , j ∈ J

zj , j /∈ J

h

g − h

�

J,h
disks	
 excluded



4. Torus knots and Torus knots: conclusionW(G,R)

K(x, y) =
sinh

�x−y
2P

�
�x−y

2P

�
sinh

�x−y
2Q

�
�x−y

2Q

�with	
 

dµP,Q
N =

N�

i=1

dλi e
−Nλ2

i /2PQt
�

1≤i<j≤N

(λi − λj)
2K(λi, λj)

Wn(x1, . . . , xn) =
µP,Q
N

��n
i=1 Tr

dxi

xi−eM/PQ

�
c

µP,Q
N [1]

We	
 would	
 like	
 to	
 compute

This	
 model	
 is	
 a	
 special	
 case	
 of
the	
 matrix	
 model	
 enumerating	
 maps	
 with	
 tubes

??any	
 explanation

Cannot	
 be	
 generalized	
 yet	
 to	
 hyperbolic	
 knots	
 ...

✹	
 

✹	
 

(no	
 finite-dimensional	
 reduction	
 of	
 CS	
 theory)



5  Hyperbolic knots and

Definition, classification

Knot invariants
Asymptotics and why should we care ?

W(G,R)



5. Hyperbolic knots and Generalized vol. conjectureW(G,R)

✹	
 G = SU(2) m 
R  = · · ·

(m	
 -	
 1)	
 boxes

q → 1q 

u = m ln(q)

The	
 interest	
 about	
 asymptotics	
 of	
 knot	
 invariants	
 started	
 from

Volume	
 conjecture Kashaev	
 (98),	
 H.	
 Murakami	
 (00)

If	
 K	
 is	
 a	
 hyperbolic	
 knot,	
 Klim
m→∞

2π

m
ln
��J ,m(q = e2iπ/m)

�� = Volume(S3 \K)K

→ ∞
	
 	
 fixed



✹	
 G = SU(2) m → ∞
	
 	
 fixedR  = · · ·

(m	
 -	
 1)	
 boxes

q → 1q 

u = m ln(q)

The	
 interest	
 about	
 asymptotics	
 of	
 knot	
 invariants	
 started	
 from

Generalized	
 ... Gukov	
 (04)

If	
 K	
 is	
 a	
 hyperbolic	
 knot,	
 

K

with	
 
1

2π
Re[uS−1(u)] = Volumeu(S3 \K)K

There	
 are	
 several	
 methods	
 to	
 compute Sk(u)

5. Hyperbolic knots and Generalized vol. conjectureW(G,R)

I	
 will	
 present	
 a	
 conjectural	
 one	
 involving	
 topological	
 recursion

J ,m(q) = (ln q)∆/2 exp
� �

k≥−1

(ln q)k Sk(u) + o(ln q)∞
�



5. Hyperbolic knots and Graph with nodesW(G,R)

−→ g

initial	
 data output

n, g ≥ 0
( (ωg

n =

ω0
1 =

ω0
2 =

Topological	
 recursion	
 :



vertices	
 of	
 type	
 1	
 	
 are	
 n-valent

5. Hyperbolic knots and Graphs with nodesW(G,R)

Definition

A	
 graph	
 with	
 nodes is	
 a	
 abstract	
 graph	
 with	
 external	
 legs

g

vertices	
 of	
 type	
 2	
 (nodes)

with	
 

carry	
 an	
 integer	
 label	
 g	
 	
 	
 

(n ≥ 1)

χ = 2g − 2 + n > 0

edges	
 :	
 type	
 1	
 	
 	
 	
 	
 	
 	
 	
 type	
 2	
 

external	
 legs	
 :	
 	
 type	
 1	
 

✹	
 

✹	
 
Example



g

5. Hyperbolic knots and Graphs with nodesW(G,R)

We	
 assign	
 the	
 following	
 weight	
 to	
 a	
 graph	
 with	
 nodes	
 	
 

Choose	
 a	
 spectral	
 curve	
 and	
 an	
 initial	
 data

topological	
 recursion

on	
 the	
 spectral	
 curve

z ω0
2(z1, z2) =

z1
z2

ω0
1(z) =

−→ ωg
n(z1, . . . , zn) =

zn

z1

Choose	
 a	
 path	
 	
 	
 	
 Γ
Choose	
 a	
 cycle	
 	
 	
 	
 	
 B

assing	
 a	
 variable	
 	
 	
 	
 to	
 each	
 edge	
 z

local	
 weight	
 for	
 a	
 n-valent	
 vertex	
 of	
 type	
 1	
 
g

zn

z1

local	
 weight	
 for	
 a	
 n-valent	
 vertex	
 of	
 type	
 2

(ln q)2g−2+n

ρn

for	
 external	
 legs,	
 integrate	
 z ∈ Γ

for	
 edges,	
 integrate	
 z ∈ B

include	
 the	
 symmetry	
 factor

Choose	
 numbers (ρn)n

✹	
 

✹	
 

✹	
 

✹	
 

✹	
 

✹	
 



5. Hyperbolic knots and Graphs with nodesW(G,R)

Example

z1 ∈ Γ

z2 ∈ Γ

z3 ∈ Γ

z4 ∈ B

z5 ∈ B

z6
∈ B

z7 ∈ Bz 8
∈ B

ln q

(ln q)2

(ln q)8

ω1
1

ω0
4ρ3

ρ2

ρ1

weight	
 = (ln q)11ρ1ρ2ρ3
��

B
ω1
1

��1
4

�

B

�

B

�

Γ

�

Γ
ω0
4

��1
6

�

B

�

B

�

B

�

Γ
ω3
4

�

z9 ∈ B
ω3
4



We	
 define	
 the	
 wave	
 function	
 as	
 a	
 generating	
 series	
 in	
 

ψ(ln q ; ω0
1 , ω

0
2 ,Γ,B, (ρn)n)

= exp
� 1

ln q

�

Γ
ω0
1 +

1

2

�

Γ

�

Γ
ω0
2 +

�
weight

�
connected graphs

with nodes

��

5. Hyperbolic knots and Graphs with nodesW(G,R)

1

2
1

ln q +

1

6
(ln q)( 1

2
+

1

2
+ ({= exp

1

6
+ + {

+O(ln q)2

ln q

Topological	
 recursion	
 with	
 nodes



K

K

K

To	
 any	
 knot	
 	
 	
 	
 ,	
 one	
 can	
 associate	
 a	
 spectral	
 curve	
 

5. Hyperbolic knots and A-polynomial curveW(G,R)

K

C =
�
SL2(C) representations of π1(S3\ )

�

=
�
(x, y) ∈ C2, A (ex, ey) = 0

�
K

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 is	
 the	
 A-polynomial	
 of	
 A ∈ Z[X,Y ] K Cooper,	
 Culler,	
 Gillet,	
 Long,	
 Shalen	
 (94)

meridian e±x

e±y
longitude

We	
 choose	
 the	
 initial	
 data

z

ω0
2(z1, z2) =

z1
z2

ω0
1(z) = = y(z)dx(z)

= dz1dz2(Green function(z1, z2) on C)

�



	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 is	
 the	
 A-polynomial	
 of	
 K

5. Hyperbolic knots and Asymptotics of colored JonesW(G,R)

K

C =
�
SL2(C) representations of π1(S3\ )

�
K

A ∈ Z[X,Y ] K

meridian e±x

e±y
longitude

z

ω0
2(z1, z2) =

z1
z2

ω0
1(z) = = y(z)dx(z)

= dz1dz2(Green function(z1, z2) on C)

K=
�
(x, y) ∈ C2, A (ex, ey) = 0

�

To	
 any	
 knot	
 	
 	
 	
 ,	
 one	
 can	
 associate	
 a	
 spectral	
 curve	
 

We	
 choose	
 a	
 path	
 so	
 that	
 

Conjecture Dijkgraaf,	
 Fuji,	
 Manabe	
 (09),	
 corrected	
 by	
 GB,	
 Eynard	
 (12)

For	
 suitable	
 	
 	
 	
 and	
 node	
 weights	
 m → ∞
fixed

q → 1q 

u = m ln(q)

�
Γ(u) =

� x=u
+
� x=−u

ψ(ln q ; ω0
1 , ω

0
2 ,Γ(u),B, (ρn)n)

B (ρn)n

K
�
Jm, (q)

�2 ∼

K

K)



K

K

5. Hyperbolic knots and RemarksW(G,R)

Conjecture Dijkgraaf,	
 Fuji,	
 Manabe	
 (09),	
 corrected	
 by	
 B.,	
 Eynard	
 (12)

For	
 suitable	
 	
 	
 	
 and	
 node	
 weights	
 m → ∞
fixed

q → 1q 

u = m ln(q)ψ(ln q ; ω0
1 , ω

0
2 ,Γ(u),B, (ρn)n)

B (ρn)n

1

2

1

ln q

+

1

6
(ln q)( 1

2
+

1

2
+ ({= exp

1

6
+ + {

+O(ln q)2

=
1

ln q

�� x=u

+

� x=−u

ydx
�
=

m

2π
Volumeu(S3\ ) Neumann,	
 Zagier	
 (85)

Yoshida	
 (85)

1

ln q

In	
 agreement	
 with	
 the	
 volume	
 conjecture	
 since	
 it	
 is	
 known	
 that

�
Jm, (q)

�2 ∼

for	
 hyperbolic	
 knotsgenus(C) > 0 −→

✹	
 

✹	
 nodes	
 are	
 necessary



Consider	
 the	
 3	
 Jacobi	
 theta	
 series	
 in	
 

5. Hyperbolic knots and Example : 8-knotW(G,R)

A (X,Y ) = Y 2X4 + Y (−X8 +X6 + 2X4 +X2 − 1)Y +X4

X = ex, Y = ey

is	
 	
 	
 	
 to	
 an	
 elliptic	
 curve� 1

τ
C

C/(Z+ τZ)
The	
 curve	
 A(ex, ey) = 0

Here	
 is	
 the	
 recipe	
 for	
 the	
 node	
 weights	
 ...

ϑ2(Q) =
�

k∈Z(−1)kQk2/2

ϑ3(Q) =
�

k∈Z Q
k2/2

ϑ4(Q) =
�

k∈Z Q
(k+1/2)2/2

Q = e2iπτ

B
0

(−8π2Q∂Q)�ϑ•
ϑ•

= P�(ϑ
4
2(Q), ϑ4

3(Q), E2(Q))It	
 is	
 known	
 that	
 where	
 	
 	
 	
 	
 is	
 a	
 polynomialP�

{
P�(ϑ

4
2(Q), ϑ4

3(Q), 0)Let	
 us	
 compute	
 for	
 

(=	
 algebraic	
 numbers	
 because	
 A	
 has	
 	
 	
 	
 -coefficients)Z



5. Hyperbolic knots and Example : 8-knotW(G,R)

A (X,Y ) = Y 2X4 + Y (−X8 +X6 + 2X4 +X2 − 1)Y +X4

X = ex, Y = ey

is	
 	
 	
 	
 to	
 an	
 elliptic	
 curve� 1

τ
C

C/(Z+ τZ)
The	
 curve	
 A(ex, ey) = 0

Here	
 is	
 the	
 recipe	
 for	
 the	
 node	
 weights	
 ...

B
0

−7+3i
√
15

24
−7−3i

√
15

24
7
12

47+21i
√
15

96
47−21i

√
15

96 − 47
48

−665+9i
√
15

1152
−665−9i

√
15

1152 − 301
576

Dϑj/ϑj

��
E2≡0

D2ϑj/ϑj

��
E2≡0

D3ϑj/ϑj

��
E2≡0

j = 2, 3, 4 up	
 to	
 permutationD = −8π2 Q∂Q

=�ρn
�

(Ji)i partition of n

�

i

ρ|Ji| and

�ρ2n+1 = 0

�ρ2n =
(−8π2Q∂Q)nϑ•

ϑ•
(Q = e2iπτ )

���
E2≡0

ρ4 = −2

�ρ2n

ρ6 = − 511
576

ρ2 = 7
12

ρ2n+1 = 0

· · ·



5. Hyperbolic knots and Example : 8-knotW(G,R)

For	
 the	
 8-knot,	
 we	
 predict	
 from	
 topological	
 recursion	
 with	
 nodes

Asymptotics	
 of	
 the	
 colored	
 Jones	
 polynomial

e32u − 4e30u − 128e28u + 36e26u + 1074e24u − 5630e22u

+5782e20u + 7484e18u − 18311e16u + 7484e14u + 5782e12u

+1074e8u + 36e6u − 128e4u − 4e2u + 1

S1(u) = − 1

24σ3/2(eu)
(e12u − e10u − 2e8u + 15e6u − 2e4u − e2u + 1)

S2(u) =
1

σ3(eu)
(e12u − e10u − 2e8u + 5e6u − 2e4u − e2u + 1)

S3(u) =
e4u

180σ9/2(eu) ( (
σ(X) = X8 − 2X6 −X4 − 2X2 + 1where

in	
 agreement	
 with	
 earlier	
 predictions	
 of	
 Dimofte,	
 Gukov,	
 Lenells,	
 Zagier	
 (09)

KJ ,m(q) = (ln q)∆/2 exp
� �

k≥−1

(ln q)k Sk(u) + o(ln q)∞
�



Conclusion

The	
 same	
 topological	
 recursion	
 allows	
 to	
 compute

generating	
 series	
 of	
 maps	
 with	
 tubes	
 of	
 any	
 topology

asymptotic	
 expansion	
 in	
 matrix	
 models

asymptotic	
 expansion	
 of	
 knot	
 invariants	
 

t = N ln(q)
✹	
 G = SU(N) N 

R = fixed	
 Young	
 tableau

→ ∞

fixed

✹	
 G = SU(2) m → ∞

fixedR  =
(m	
 -	
 1)	
 boxes

q → 1q

q → 1q
u = m ln(q)

There	
 should	
 be	
 a	
 unifying	
 picture	
 ...

Tutte	
 eqns.

Schwinger-Dyson	
 eqns.

???

torus	
 knots

hyperbolic	
 knots



2 questions for combinatorists

✹	
 Bijection	
 between	
 maps	
 behind	
 the	
 topological	
 recursion	
 ?

?

z1

z2

zn

g

z2

zn
z

ι(z)

z1 g − 1= +
z

ι(z)

z1

zj , j ∈ J

zj , j /∈ J

h

g − h

�

J,h

disks	
 excluded

✹	
 For	
 maps,	
 what	
 would	
 a	
 topological	
 recursion	
 with	
 nodes	
 count	
 

�


