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1 Maps with(oub) tubes ..

Definition
Planar maps and subskibubion

Planar l=-cut lenmama

Higher %opoio-gies



1. Maps with(oubt) tubes Definition of a map

A map 1s a discrete surface obtained by gluing along edges

faces with topology of a disk

welght
132

k (k>1)

welght
per vertex

t

weight = t1 t5tststs



1. Maps with(oubt) tubes Definition of a map with tubes

A map with tubes is a discrete surface obtained by gluing along edges

faces with topology of a disk

weight

)

or with topology of a cylinder

welght
fytkl,]@
(k1 + ko > 1)

® weight ¢ per vertex
weight = t*y°t1t tstets sta ste1



1. Maps with(oub) tubes Planar maps and substitution

Planar maps are those which can be embedded in a sphere.

To|(tk)k; (tky ko )iy ko] = generating series of maps
with 1 marked, rooted face of perimeter /¢

Planar

|

Notion of
inside/outside a tube

|

Planar maps with tubes
have a nested structure




1. Maps with(oubt) tubes Planar maps and substitution

Planar maps with tubes have a nested structure

map with (gasket)

stuffed with rooted maps with tubes

with substitution of tubes (rooted inside) ' .



1. Maps with{out) tubes

Planar maps with tubes

To[(tk) ks (Pky ko ) Bor oo

with substitution of

g]f = {1 + ’}/thkjm

/

rooted
inside

Planar maps and subskibution

have a nested structure

= Ty[(tx); O]

T [(tn)n; (Bng s ) ns)

|

tubes

stuffed with rooted maps
with tubes

—— Counting planar maps with tubes is reduced to counting planar maps



1. Maps with(out) tubes Admissible weiqghts

t,(tx)r  non-negative is admissible when VI > 1, t0;T¢[(tx)x;0] < +00
(generating series of pointed rooted planar maps)

t,(tk)r real-valued is admissible when |¢|,(|tx|)x is admissible

t,(tk)k, Vs thy ko is admissible when ¢, (t1.)r is admissible



1. M&F?s with(oubt) tubes Planar l-cubk lemma

t,(tx)r non-negative is admissible when VI > 1, t9;Ty[(tx)r;0] < +o0
(generating series of pointed rooted planar maps)

t,(tx)r real-valued is admissible when |t|,(|tx|)r is admissible

t,(tk)k,Ysthy ks is admissible when t, (1), is admissible

|l et Dzl Bousquet-Mélou (02), GB, Bouttier, Guitter (12)

If t,(tk)k,fy,tkl k, is admissible, there exists a,b € R

Tyl (tr)k; (t
so that W7 (z ( +Z el(tr) xef_ll’kz)kl’@])dx

% is holomorphic in C \ [a, b|
% has a discontinuity on |a, b|
¥ remains bounded



1. M&F’s with{out) tubes Analytic continuation

r e C\ |a,b] z€ C\ D
conformal mapping analytic continuation

wi(z) = W{(x(z)) can be continued in a neighborhood U of C



1. M&F’s with{out) tubes Analytic continuation

conformal mapping analytic continuation

wi(z) = W{(x(z)) can be continued in a neighborhood U of C

We have an involution z — ¢(z) so that x(2) = z(¢(2))
exchanging interior/exterior of

0 () determines a Riemann surface, called spectral curve
1 on which 1t can be seen as an analytic 1-form



1. M&Fvs with{out) tubes Higher topologies

A map with(out) tubes has genus g i1f

1t 1s connected and can be embedded 1n g haggies

We define the generating series

n

Wi(xy,...,x,) = Z [H

b1, 0,>1 i=1

dx, generating series of genus g maps
gi_|_1} X 4 with rooted marked faces
Ui of perimeters /¢1,...,¥¢,

and we would like to compute them ...
We cannot speak of nesting for g > 0 !

Rather use Tutte byjective decomposition of maps to establish functional relations
+ a good deal of complex analysis ...



1. M&F's with{out) tubes Higher topologies

n . .
dx, generating seriles of genus g maps
Wil(x1, ..., x,) = Z [H gz._|_1i| X4 with rooted marked faces
oy >1  i=1 Li of perimeters ¢1,...,4¢,

If t,(tk)k, Y, tky ks, 1S admissible, then Wi (x1,...,xy)
% is holomorphic in C \ |a, b
% has a discontinuity when z; € |a, b]

¥ can be analytically continued to w?(z1,...,2,)
on the same Riemann surface

It can be computed by a recursion on 2g - 2 + n
which takes a universal form

for maps Eynard (06)
for maps with tubes GB, Eynard, Orantin (13)



1, Maps with(out) tubes Topological recursion

It can be computed by a recursion of topological nature.

the involution ¢
ze U

\d ez, €
22

g L
— z1—> +; 21—

n disks e’Xcluded




1. Maps with(out) tubes Topological recursion

wy can be computed by a universal recursion of topological nature

: 0
if one knows w! = @ and wy = @

but the combinatorial interpretation of the recursion 1s not known ...

wWI(L(2), 22, ..., 2n) M

The topological recursion 1s the algorithm Eynard, Orantin (07)

d= 40
— wg: @
+- 2 2
n,g >0

initial data output




w and formal makrix

model s

Relakion to maps
Multidimensional integrals ..

w and bheir asvmpw%ws



2. Formal malbrix wmodels «w and maps

Generating series of maps can be represented by formal matrix integrals
Brézin, Itzykson, Parisi, Zuber (78)

1f we introduce

the generating series of faces D(x) = — —

g g (z) ; Ek: 3
the gaussian measure on _NTyM?2 /2t
N x N hermitian matrices dp(M) =dMe

then, the formal series 1n ¢, ¢} has a well-defined decomposition

CBi—M

. 2—29—n
eTrD(M)] _ZN I Wg(xlwﬂaxn)
g=>0

M[eTrD(M) [T, Tr -dz }

| S
generating series of maps
of genus g with n rooted marked faces



2. Formal makrix wmodels w ad maps with tubes

Generating series of maps with tubes have a similar representation
reformulation of Gaudin, Mehta, Kostov (90s)

if we introduce the generating series of faces

N t
with topology of a disk D(x) = — E _]f ok
1 : ’Y tkl,k'g k.2
th topol f lind E
with topology of a cylinder 2 e k2

then, the formal series in ¢, tx,7,tk, .k, has a well-defined decomposition

M{ TD(M)+TrC(M&1y Ax®M) T[Ty dx?w]

c — ZNQ_ZQ_” Wi(xq,...,x,)

" [eTr D(M)—i—TrC’(M@lN,lN@M)]
920

generating series of maps with tubes
of genus g with n rooted marked faces



2. Formal makrix models Multidimensional integrals

UN) invariant measures :

the integrals over M reduces to an integral over its eigenvalues

e.g. the partition function

,LL [eTr D(M)—I—TI’C(M@].N,]_N@M)]

Vol(U(N)) N2
= d)\ 2t +D(>‘ )—"C()‘Z?)‘ ) - 2 2C(>"La>‘ )
N!(2m)N /RN H © H (Ai =)

1<i<j<N

arbitrary two-point interaction
vanishing like a square
at short distance

P R Y Y R I T



2. Formal makrix models Mulkidimensional inkegrals

N
A summary on the large N expansion of /H dhe NV (2 H (A — )\j)QK()\i7 Aj)

i=1 1<i<j<N o
K non-vanishing

formal integral (—— combinatorics, 1/N expansion, 1-cut lemma)

K =1 Ambjgrn, Makeenko, Chekhov, Kristjansen (90s), Eynard (04)
K#*1 GB,E d, Orantin (13 .

ynard, Orantin (13 Topological
cv integral + 1-cut + assumptions —> 1/N expansion recursion

K =1 Albeverio, Pastur, Shcherbina (00), Ercolani, McLaughlin (04)
GB, Guionnet (11)

K # 1 GB, Guionnet, Kozlowski (in progress)

cv integral + several cuts + assumptions —— HN-expansion- TOPOLQSL¢QL

K =1 Theuristics : Bonnet, David, Eynard (00), Eynard (07) g >
proof : GB, Guionnet (13) recursion
K # 1 GB, Guionnet, Kozlowski (in progress) with nodes

(see later ...



Imite le moins possible les hommes dans leur
énigmatique maladie de faire des noeuds.

René Char, Rougeurs des matinaux

3 Inkroduction ko lnoks

Definition, classificaktion
Kot thvariants
Asymptotics and why should we care ?



3. Introduction to knots Definition

A knot is an isotopy class of proper embedding of a circle in §°

Word 1n the braid group Tubular neighborhood Example
<> 2d projection of a knot of a knot

o unknot
#
1 .
E E figure-eight
2 _./ . knot

N




3. Introduction to knots Classification of knots

Knots are complicated (as much as arithmetic in Z is ...)

There exist infinitely many prime knots, which fall in 3 families

* (P,Q) torus knots - ‘(

¥ hyperbolic knots S3 \ K admits a complete hyperbolic metric

¥ satellite knots
(uncharted territory)



3. Inkroduction ko knoks Kinok thvarianks

Knots are complicated (as much as arithmetic in Z is ...)

Hard algorithmic problems :
¥ unknotting number

¥ distinguishing two knots

—> construction of (computable) knot invariants to give partial answers

For any compact Lie group G, irreducible representation (<,

one can construct an invariant using representations of quantum groups

K — WK(G,TQ;q)G Zlq,q ]
knot colored HOMFLY polynomial

behaving nicely under geometric operations (gluings, cabling, ...)



3. Inkroduction ko knoks

Kotk thvartanks

For any compact Lie group G, irreducible representation < |

one can construct an invariant using representations of quantum groups
—1
K — WK(G,Q;q) € Zlq,q "
knot colored HOMFLY polynomial

behaving nicely under geometric operations (gluings, cabling, ...)

G = Su(R) 4

1)

Jones polynomial

m-th colored Jones polynomial =3K,m(q>
(m - 1) boxes

J%nknot (q) qg —d

q—q!
T <Y (q) = q:__qq__lm ( > (qz)k(l/qz)k)

but in general no closed formulas ...



3, Inktroduction to knots Asymptotics of kol tnvariants

Enumeration of knots by matrix model techniques
Zinn-Justin, Zuber

.  has nothing to do with the topic of this talk

For a given knot K

we would like to compute the asymptotic expansion of WK(G’,Q; q) when

* & = SU(N) N—oo q—1
[ = fixed Young tableau E=N ln(q) fixed
(theory of LMO 1nvariants)

* &
<

1)

SU(2) m—oo q—1
u = m ln(q> fixed

1)

(m - 1) boxes



3, Inktroduction to knots Asymptotics of kol tnvariants

For a given knot K
we would like to compute the asymptotic expansion of WK(G',TQ; q) when

* G = SU(ND N—oo q—1
K = fixed Young tableau E=N 1n(q) fixed

(theory of LMO 1nvariants)

4-. Theorem : for torus knots, by the Eopotogi«:ai. recursion

* &
<

1)

SU(2) m—oo q— 1
u = m ln(q> fixed

1)

(m - 1) boxes

&. Conjecture : for hyperbolic knots, by the ko 01.09&#:&1. recursion
with nodes



3. Inkroduction ko knoks Why should we care ?

The interest about asymptotics of knot invariants started from

* G = SUR) Mmoo 91
K = w = mln(q) fixed

(m - 1) boxes

Volume conjecture Kashaev (98), H. Murakami (00)

2 : |
If K is a hyperbolic knot, lim T n ‘JK,m(q — ezm/m)‘ = Volume(S3 \ K)

m—o0 11

Algebralc,: } .Geometn.c
construction information



3. Inkroduction ko knoks Why should we care ?

The interest about asymptotics of knot invariants started from

* &
<

1)

SU(R) Mmoo 9q-— 1
W = m ln(q) fixed

1

(m - 1) boxes

Volume conjecture Kashaev (98), H. Murakami (00)

2 : |
If K is a hyperbolic knot, lim T n ‘JK,m(q — ezm/m)‘ = Volume(S3 \ K)

m—o0 11

Other conjectures other values of &« and asymptotic expansion Gukov (04)
arithmeticity, modularity, ... Zagier et al. (09)

Computation and unified understanding of those properties ?
Relation to other fields (counting surfaces ... ?



4- Tca»rs kinoks and

Definition, classification

Kotk thvartanks

Asvmpﬁo&ws and wk:j should we care ?

rSONEXERINT

NG e




4. Torus knoks and W(G,R{) Chern-Simons &haar:j

WK(G; (<) Q)

can be computed as an observable in Chern-Simons theory in S35  Witten (89)

CS theory = quantum field theory with measure

dpcsA] = DA exp { - E(A/\dfht A/\A/\A)}

A = section of a €& principal bundle over Sj

If € isa loop in Ss3

I [ Trrz( holonomy of A along C. )] 1s a topological invariant

and coincides with WK(G’,Q; G])



4, Torus kinoks and W(G’,K{) The case of torus kinots

For torus knots, the path integral reduces to a finite dimensional integral !
(exact saddle point) Rozansky (98), Marino (02), Beasley, Witten (07), Kallen (09)

G = SUND —\C [/~ = SN

o ‘-

i=1 1<i<j<N
2=y siph(Z=Y
with  K(x,y) = Sm}i(_sp ) s x(_y?Q )
(%) (%)

?Q [Schurra(ekl, ]

P,Q

and the knot invariants are W(‘SU(N);R;q) _ K 1
py I




4, Torus knoks and MG,&)

The case of torus knoks

N
duy® = T dn e ™29 TT (= A)2K (A, Aj)

i=1 1<i<j<N
inl(52) sinh (5)
(57 (%)

with K(x,y) =

PQTq A A
. . ch 1 ..., e\
and the knot invariants are W(SU(N),Q;G]) _ HN | ur{]zj((; )]
1]

It 1s convenient to use another basis of symmetric functions

SchurQ +— power sums

and form a generating series of expectation values of power sums

PaQ n dxz
KN H':1 Ir —Fp0 .
Wo(x1, ..., xn) = gt O ]C M = diag(e™, ..., e )

P,
,UNQ [1]



4. Torus knots and W(G’,ﬁi) SU(N) at Large N

1=1 1<i<j<N
nh(%=¥) sinh (%
with K(z,y) = Sm}i(_s ) sin x(—iQ )
( 2P (2—)
P,Q T dz;
We would like to compute Wy, (x1,...,x,) = PN [HZ:1P,5 wz-—eM/PQ]c

KN 1]

prediction, check : Brini, Eynard, Marino (11)
eorem proof : GB, Eynard, Orantin (13)

Assume t = NInqg > 0 fixed
% There is a large N expansion W,, = ) g>0 NV 229 WY
% There is an explicit formula for W, and W5

% WY have 1-cut |a,b|, and are computed by the topological recursion



Reminder: EOFOLOSL«&QL recursion

It can be computed by a recursion of topological nature.

the involution ¢
ze U

\d Zj,) € J
Zn
2

L

n disks e,Xcluded




4. Torus knobks and W(G’,K{) Torus knoks: conclusion

N
duy® = [T dn e ™29 TT (A — A)2K (A, Aj)

1=1 1<i<j<N
nh(%=¥) sinh (%
with  K(z,y) = Sm}i(_s ) sin w(—jQ )
( 2P (2—)
P,Q T dx;
We would like to compute Wy, (x1,...,x,) = PN [HZ:1P7; wz-—eM/PQ]c

KN 1]

% This model 1s a special case of
the matrix model enumerating maps with tubes

any explanation 27

¥ Cannot be generalized yet to hyperbolic knots ...
(no finite-dimensional reduction of CS theory)



& ijerbatw oks amd

Definition, classification
Kot thvariants
Asvmpﬁo&ws and whj should we care ?



& Hv[ﬂerbaliﬁ kinoks and W(&,Q) Generalized vol, conjecture

The 1nterest about asymptotics of knot invariants started from

* G = SUR)
R =

(m - 1) boxes

m—oo q—1

u = min(g) fixed

Volume conjecture Kashaev (98), H. Murakami (00)

If K 1s a hyperbolic knot,

2 :
lim = In | J,m (g = eZm/m)| = Volume(S;3 \ K)

m—0o0 1M



e ijerboti«r: kinoks and W(@,Q)

The 1nterest about asymptotics of knot invariants started from

* & = SUR) m—oo q—1
R = u = min(q) fixed

(m - 1) boxes

Gulov (0

If K 1s a hyperbolic knot,

Jem(q) = (Ing)>/? exp ( Y (Ing)* Sk(u) + o(In Q)OO>

k>—1

with —Re[uS_; (u)] = Volume, (S5 \ K )

2T

There are several methods to compute Sk ()

I will present a conjectural one involving topological recursion

Creneralized vol. Comjef:&ur@.



£, ijerbc}i.i«: knoks and W(&,Q)

4= 40
: . —
Topological recursion : @
0
w2 —

initial data

Gro\pk wikth nodes



<3 ijerbcwi.ir: kinoks and W(@,Q) Graphs with nodes

A goraph with nodes 1s a abstract graph with external legs

% vertices of type 1 are n-valent (n > 1) , o
carry an integer label g \\%

with x =29 —2+4+n >0

vertices of type 2 (nodes) é

¥ edges :typel —— type 2

external legs : type 1 —— Example




<3 ijerbcwi.ir: kinoks and W(@,Q) Graphs with nodes

<2
L 0 _~
Choose a spectral curve and an initial data  w?(2) = ZQ@ ws (21, 22) = @

21"

topological recursion |, g éd
0 w21y, 2n) = o

2

Choose a path I

. on the spectral curve
Choose a cycle B P

Choose numbers (pn )n

We assign the following weight to a graph with nodes

# assing a variable z to each edge

=)k
% local weight for a n-valent vertex of type 1 (In )29~ 2*" O o |
Zn
¥ local weight for a n-valent vertex of type 2 On

% for external legs, integrate z € I

¥ for edges, integrate z € B

% Include the symmetry factor



<3 vaerbai.ir: kinoks and W(&,Q) Graphs with nodes

In g
Example

weight = (Ing)"'p1p2ps ]{ ]{]{//uq é]i]i]i'/rwi’)



<3 vaerba-tm kinoks and W(&,Q) Graphs with nodes

We define the wave function as a generating series in In g
w(lnc.hwlawZaFB ( ) )

B 1 o 1 0 . connected graphs
- P {m /le T3 / W2t Zwelght ( with nodes

+0(In g)?

Topological recursion with nodes

)}



5. ijerbcwtm kinoks and W(&,Q) A-polynomial curve

To any knot K, one can associate a spectral curve

o +x
meridian €

Ce= {SLQ((C) representations of (Sg\K)}
~{(z,y) €C,  Afe",e") =0}

longitude eV

A€ Z|X,Y ] is the A-polynomial of K  Cooper, Culler, Gillet, Long, Shalen (94)

We choose the initial data

wi(z) = Z;Q = y(z)da(z)

<2
ws (21, 22) 221@ = d,,d,,(Green function(z1, z2) on C)



& Hj[ﬂ?@”bouﬁ kinoks and W(&,Q) ASij&o&it’:s of colored Jones

- . +
To any knot K, one can associate a spectral curve meridian €%

CK: {(az,y) c C?, Ade®,e¥) = O}

AK € Z|X,Y] is the A-polynomial of K longitude eiyw""'”
wi(2) = @ = y(2)dz(z)

~2
w(z)(zh 22) :Zl‘E) = d,,d., (Green function(zy, 22) on CK)
We choose a path so that fF(u) — [y e

Dijkgraaf, Fuji, Manabe (09), corrected by GB, Eynard (12)

For suitable B and node weights  (0n)n m— oo 9 1
(Jm,K(Q))2 ~ w(IHQ7 w?awga F(U), Bv (pn)n) U = 11’1((1) fixed



5, ijerbcwi.ir: kioks and M@;Q) Remarks

Dikgraaf, Fuji, Manabe (09), corrected by B., Eynard (12)
For suitable B and node Weights (pn) m—oo q—1

(Jmil@))” ~ ¥(ng; wl,w), T (Pn)n) u = min(q) fixed

arca
-2 i O+ s o OF + j0 T oD @)

+0(In q)? J

¥ In agreement with the volume conjecture since it is known that

1 — L( / - 4+ / - ydx) — ﬁVolumeu(Sg\ K) Neumann, Zagier (85)
Inq Inq 2T Yoshida (85)

% genus(C) > 0 for hyperbolic knots — nodes are necessary



<3 ijerboi.ir: kinoks and W(G,Q) Example : ¥-knot

AX,V)=Y*X*+Y(-X®+ X +2X* + X - 1)Y + X*
X=e"Y =¢Y

The curve A(e®,e¥) =0
is ~ to an elliptic curve C/(Z + 77Z)

Here 1s the recipe for the node weights ...

92(Q) = Zkez(_]é)kaZM
Consider the 3 Jacobi theta series in V3(Q) > ez Q" /2
> ez Q(k+1/2)2/2

<
N
<

|

(—871‘2@(9@)619.
Ve

Let us compute Pg(ﬁg(Q), ﬁg(@), 0) for @ = 2T

It is known that = P(95(Q),93(Q), E2(Q)) where P, is a polynomial

(= algebraic numbers because A has Z -coefficients)



<3 ijerbotir: kinoks and W(G,Q) Example : ¥-knot

AX,V)=Y*X*+Y(-X®+ X +2X* + X - 1)Y + X*
X =e"Y =¢

The curve A(e”,e¥) =0
is ~ to an elliptic curve C/(Z + 77Z)

Here 1s the recipe for the node weights ...

N N _8 2 a nﬁ. _
Pn = Z Hp|Jf,,| and Pon = ( z Q Q) (Q — 6217”-)

(J;); partition of n 1 N 790 E>=0
pan+1 =0
2 . .
D = —8m" Q0q 7 =2,3,4 up to permutation
V15 7—3iv/15 7 P+ =0
/9. —7+3iv/15  —7—3i e
D9 /0] g, 24 24 12 p2 = &
29. /9. 47421015 47-21iv/15 47 P4 = —
g = — 2Ll
D39 /9 —665+9iv/1I5 —665—9iv/15 _ 301 576
I 71 Ey=0 1152 1152 576

P2an



=3 ijerbou«: kinoks and W(G,Q) Example

Asymptotics of the colored Jones polynomial

Jem(q) = (Ing)™>/? exp ( Y (Ing)* Sk(u) + o(In CI)OO)
E>—1

For the 8-knot, we predict from topological recursion with nodes

1 u u u u u u
Si(u) = -5 373 () (2% — 10 — 2e8% 4 1554 — 2eM — e2v 4 1)
1
SQ(U) — Ug(eu) (61211, . 610u . 268u i 56611, . 26411, . 62u 4+ 1)
et 7% — 4e7" — 128”4 36" + 1074 — 5630e**"
Ss(u)

T 18009/2(ew) | 4578220 4 7484¢15% — 1831110 4 748414 4 5782612
+1074€3" + 36 — 128e™ — 4e*" + 1

where ¢(X) = X% —2X% - X* - 2X* 41

In agreement with earlier predictions of Dimofte, Gukov, Lenells, Zagier (09)



Conclusion

The same topological recursion allows to compute

generating series of maps with tubes of any topology <«—— Tutte eqns.

asymptotic expansion 1n matrix models < Schwinger-Dyson eqns. )
asymptotic expansion of knot mvariants < ???
* ¢ = SUIN N—ooo g—1

] ( ) q torus knots

K = fixed Young tableau E=N ln(q) fixed

* G = SUR) m—oo g1

2 hyperbolic knots

1

u = min(q) fixed

(m - 1) boxes

There should be a unifying picture ...



2 questions for combinatorists

¥ Bijection between maps behind the topological recursion ?

\% =
1(2) - L(Z>
— 2 —» + ; z] — N :
& disks’excluded SoEn i

¥ For maps, what would a topological recursion with nodes count ?

Z1

2




