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» CDT in 2d is a statistical system with partition function
1
Zepr =y g7
cDT = CTg

> Zcpr(g) is a generating function for the number of causal
triangulations T of S? with N triangles.

> The triangulations have a foliated 4
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quadrangulations with a unique N
local maximum of the distance —_—
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» Allow spatial topology to change in time.
Assign a coupling gs to each baby universe.

» The model was solved in the continuum by
gluing together chunks of CDT. [Ambjgrn,
Loll, Westra, Zohren '07]

» Can we understand the geometry in more
detail by obtaining generalized CDT as a
scaling limit of a discrete model?

» Generalized CDT partition function
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sum over quadrangulations Q with

N faces, a marked origin, and N,
local maxima of the distance to the
origin.
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Causal triangulations and trees %

» Union of all left-most geodesics
running away from the origin.

» Simple enumeration of planar trees:

[Malyshev, Yambartsev, Zamyatin '01]
[Krikun, Yambartsev '08]
[Durhuus, Jonsson, Wheater '09]

» Union of all left-most geodesics
running towards the origin.

> Both generalize to generalized CDT
leading to different representations.
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> Labeled planar trees: Schaeffer’s bijection.
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» Unlabeled planar maps (one face per local
maximum).
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Theorem 1 [schaeffer, Miermont,...][Ambjgrm, TB]
The map ¥ : Q) — M) is a bijection satisfying

> #{faces of Q} = #{edges of ¥(Q)}

» #{local minima of Q} = #{faces of V(Q)}
#{local maxima of Q} = #{local maxima of V(Q)}
Max label on root edge of @ = label on root of V(Q)
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Theorem 1~
The map W_ : Q1) — M) is a bijection satisfying

> #{faces of Q} = #{edges of V(Q)}

» #{local maxima of Q} = #{faces of V(Q)}
#{local minima of Q} = #{local minima of V(Q)}
» Min label on root edge of Q = label on root of W(Q)
» Maximal label on @ = maximal label on W(Q) plus 1
» Minimal label on @ = minimal label on V(Q)

v

t+1

<

t-1
t+1

&

t+1

t+1

O

t-1
t+1

T

s



COI’I—Vauquelln—SChaeffer leeCt'on [Cori, Vauquelin, '81][Schaeffer, '98] %
4

> Restrict to @ with single local minimum and minimal label 0.




COI’I—Vauquelln—SChaeffer leeCt'On [Cori, Vauquelin, '81][Schaeffer, '98] %

> Restrict to @ with single local minimum and minimal label 0.
» Labeling on @ is a distance to a distinguished vertex.




COFI—Vauquehn—SChaeffer leeCt'on [Cori, Vauquelin, '81][Schaeffer, '98] %

> Restrict to @ with single local minimum and minimal label 0.
» Labeling on @ is a distance to a distinguished vertex.

> Bijection between rooted pointed quadrangulations and rooted
labeled trees with minimal label 1.




COFI—Vauquehn—SChaeffer bUeCt'On [Cori, Vauquelin, '81][Schaeffer, '98] §

> Restrict to @ with single local minimum and minimal label 0.
» Labeling on @ is a distance to a distinguished vertex.

> Bijection between rooted pointed quadrangulations and rooted
labeled trees with minimal label 1.




COFI—Vauquehn—SChaeffer bUeCt'On [Cori, Vauquelin, '81][Schaeffer, '98] %
> Restrict to @ with single local minimum and minimal label 0.
» Labeling on @ is a distance to a distinguished vertex.

» Bijection between rooted pointed quadrangulations and rooted
labeled trees with minimal label 1.




COFI—Vauquehn—SChaeffer bUeCt'On [Cori, Vauquelin, '81][Schaeffer, '98]

> Restrict to @ with single local minimum and minimal label 0.
» Labeling on @ is a distance to a distinguished vertex.

> Bijection between rooted pointed quadrangulations and rooted
labeled trees with minimal label 1.




Assigning couplings to local maxima

> Assign coupling g to the local maxima of the
distance function.



Assigning couplings to local maxima

> Assign coupling g to the local maxima of the
distance function.

» In terms of labeled trees:




Assigning couplings to local maxima

> Assign coupling g to the local maxima of the
distance function.

> In terms of labeled trees:




Assigning couplings to local maxima

. : . ®
> Assign coupling g to the local maxima of the \ f
distance function. | @

> In terms of labeled trees:




Assigning couplings to local maxima

> Assign coupling g to the local maxima of the
distance function.

> In terms of labeled trees:




Assigning couplings to local maxima

> Assign coupling g to the local maxima of the
distance function.

v

In terms of labeled trees:

v

Generating function zy(g, g) for number of rooted labeled trees with
N edges and N,,,x local maxima.

v

Similarly z1(g, g) but local maximum at the root not counted.



Assigning couplings to local maxima

> Assign coupling g to the local maxima of the
distance function.

» In terms of labeled trees:

» Generating function zy(g, g) for number of rooted labeled trees with
N edges and N,,,x local maxima.

» Similarly z;(g, g) but local maximum at the root not counted.

» Satisfy recursion relations:

oo

a= Z (z1+20+ Zo)kgk =(1-g21—2820) "

k=0 Z

) (oS 7 Z)
zO:Z(zlJrzo—i—zo)g+g—1Zzl+zo o [T

k= k=0 -

0
=z+(g-1)(1 -8z —g2) '



2 =(1-gz —2g2) "
w=za+(-1)(1-ga—gn)"

» Combine into one equation for z,(g, g):

3¢’z —4gz + (1+2g(1 - 2g))zf —1=0
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w=2+(g-1)(1- gz —gn)"
» Combine into one equation for z1(g, g):
3¢’z —4gz + (1+2g(1 - 2g))zf —1=0

» Phase diagram for weighted labeled trees (constant g):
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» The number of local maxima N,,.x(g) scales with N at the critical
point,
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should scale g occ N=3/2, j.e. g = gs€3 as observed in [ALwz '07].
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> Therefore, to obtain a finite continuum density of critical points one

should scale g occ N=3/2, j.e. g = gs€3 as observed in [ALwz '07].

» This is the only scaling leading to a continuum limit qualitatively
different from DT and CDT.



The number of local maxima N,,.«(g) scales with N at the critical :
point, ' &

4
/

<Nmax(g)>N g 2/3 <Nmax(g = 1)>N
— =2z AImaxAY = N 1/2
N (2) +0(), N /

Therefore, to obtain a finite continuum density of critical points one

should scale g occ N=3/2, j.e. g = gs€3 as observed in [ALwz '07].

This is the only scaling leading to a continuum limit qualitatively

different from DT and CDT.

g.
Continuum limit g = gc(g)(1 — A¢?),
=211 - Z€), g= gs€3:

zZ3 - (/\ +3 (925)2/3) 7 —g:=0 ®



The number of local maxima Np.x(g) scales with N at the critical %
point,

(Nmax(9)) v 9)\2/3 (Nmax(g = 1))n
Bmad@)IN_ 5 (_) O(g), 8= 2N _ /9
¥ 5+ 00 ; /
Therefore, to obtain a finite continuum density of critical points one
should scale g occ N=3/2, j.e. g = gs€3 as observed in [ALwz '07].

This is the only scaling leading to a continuum limit qualitatively
different from DT and CDT.

g.
Continuum limit g = gc(g)(1 — A¢?),
=211 - Z€), g= gs€:
2/3 8s
zZ3 - (A+3(%) )Zl—gs:o

Can compute:
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Two-point functions

» Continuum amplitude for surfaces with
root at distance T from origin.

» Rooted pointed quadrangulations with
distance t between origin and furthest
end-point of the root edge...

> ...are counted by zo(t) — zo(t — 1),
with zy(t) the gen. fun. for rooted
labeled trees with positive labels and
label t on root.

» ldem for z(t), but local max at root
not weighted by g. They satisfy

1

() = 1—gzi(t —1) — gzo(t) — gzo(t + 1)

g—1
20(t) = 21(t) + = gzt — 1) — gz(t)

7z1(0) =0 z(0) =2

Zy(1)

4o



» Solution is (using methods of [Bouttier, Di Francesco, Guitter, '03]): 4

1-0ot 1—(1-p)o—Bot?3
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Zl(t) =21

Zo(l') =2

with 8 = S(g,g) and o = o(g, g) fixed by

g(l+0)(1+4 Bo)z1 —o(l —2g2) =0,
(1-PBo—g(l+0)n+g(l—0+280)z=0.
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» Solution is (using methods of [Bouttier, Di Francesco, Guitter, '03]):
4

1-0ot 1—(1-p)o—Bot?3
1—0ott1 1—(1-B)o — Bott?’
1—ot (1 _ (1 _ ﬂ)a)z _ 52Ut+3
1- (-8 —fotl 1-(1-B)o— otz

z(t)=2=zn

Zo(l') =2

with 8 = S(g,g) and o = o(g, g) fixed by

g(l+0)(1+4 Bo)z1 —o(l —2g2) =0,
(1-B)o—g(l+0)zr+g(1—0+2B0)z =0.

» Continuum limit, g = gs€3, g = g.(1 — Ae?), t = T /e, gives

dZO(T)_Z3& YsinhX T 4+ acoshX T
daT 7 «a

3
(zcosh ZT—i—asinhZT)

590 3/4 cosh(AY/4T")

T/ — 1/67’
sinh®(AL/4T") g

» DT two-point function appears as gs — oo! [Ambjsrn, Watabiki, '95]
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Theorem 1~
The map W_ : Q) - M) is a bijection satisfying

> F#{faces of Q} = #{edges of V(Q)}

> #{local maxima of Q} = #{faces of ¥(Q)} :i

> ##{local minima of Q} = #{local minima of W(Q)}

» Min label on root edge of @ = label on root of V(Q) ! t
» Minimal label on @ = minimal label on W(Q) >

> Restricting W~ to @ with single minimum labeled 0 gives a bijection
between pointed rooted quadrangulations and pointed rooted planar
maps.



» U (Q) has a face for each local maximum of Q. Within each face
the structure of @ is similar to CDT.

> Restricting W~ to @ with single minimum labeled 0 gives a bijection
between pointed rooted quadrangulations and pointed rooted planar
maps.
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» The generating function for Q with max label t on the root edge is
2o(t) — zo(t — 1)



Two-point function for planar maps

» The generating function for @ with max label t on the root edge is
20(t) — zo(t — 1)
» Therefore one obtains an explicit generating function

oo 0

2o(t+1) — z(t) ZZN}(N n)g"g"

N=0 n=0

for the number N:(N, n) of planar maps with N edges, n faces, and
a marked point at distance t from the root.
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loop identity in generalized CDT

Consider surfaces with two boundaries separated
by a geodesic distance D.

One can assign time Ty, T, to the boundaries
(|T1 — T2] < D) and study a "merging” process.
For a given surface the foliation depends on

Ty — T, hence also N,,.x and its weight.
However, in [aALwZ '07] it was shown that the
amplitude is independent of T; — T>.

Refoliation symmetry at the quantum level in the
presence of topology change!

Can we better understand this symmetry at the
discrete level?

For simplicity set the boundary lengths to zero.
Straightforward generalization to finite boundaries.




'S

Qg = {rooted quadr. Q with marked vert. vi, vy, s.t. d(v1,v») = d} T
My = {rooted maps M with marked vert. vy, vy, s.t. d(vi,v2) =d}



Q4 = {rooted quadr. Q with marked vert. vq, vy, s.t. d(vi,w) =d} =
My = {rooted maps M with marked vert. vy, v, s.t. d(vi, ) = d}

> Let £§ - Q4 — QW) with |t; — t| — d = 2,4,... be the labeled
quad. with local minima t; on v;.

H=t=1




Q4 = {rooted quadr. Q with marked vert. vy, v, s.t. d(vi, v2) = d} %
Mg = {rooted maps M with marked vert. vi, v», s.t. d(vi,v2) = d}

> Let £§ - Q4 — QW) with |t; — t| — d = 2,4,... be the labeled
quad. with local minima t; on v;.

H=t=1




Q4 = {rooted quadr. Q with marked vert. vy, v, s.t. d(vi, v2) = d} é’;

My = {rooted maps M with marked vert. vy, v, s.t. d(vi, ) = d}

> Let £§ - Q4 — QW) with |t; — t| — d = 2,4,... be the labeled
quad. with local minima t; on v;.

H=t=1




Q4 = {rooted quadr. Q with marked vert. vy, v, s.t. d(vi, v2) = d}
My = {rooted maps M with marked vert. vy, v, s.t. d(vi, ) = d}

> Let £§ - Q4 — QW) with |t; — t| — d = 2,4,... be the labeled
quad. with local minima t; on v;.

H=t=1

Qg MgUMg_q



Q4 = {rooted quadr. Q with marked vert. vq, vy, s.t. d(vi, ) =d} =%
My = {rooted maps M with marked vert. vy, v, s.t. d(vi, ) = d}

> Let £§ - Q4 — QW) with |t; — t| — d = 2,4,... be the labeled
quad. with local minima t; on v;.

H=t=1

Qg MgUMg_q

H4 Q) ——— pq(h)



Q4 = {rooted quadr. Q with marked vert. vy, v, s.t. d(vi, v2) = d}
My = {rooted maps M with marked vert. vy, v, s.t. d(vi, ) = d}

> Let £§ - Q4 — QW) with |t; — t| — d = 2,4,... be the labeled
quad. with local minima t; on v;.

H=t=1




Q4 = {rooted quadr. Q with marked vert. vq, v, s.t. d(vi, ) = d};, :
My = {rooted maps M with marked vert. vy, v, s.t. d(vi, ) = d}

> Let £§ - Q4 — QW) with |t; — t| — d = 2,4,... be the labeled
quad. with local minima t; on v;.




Qg = {rooted quadr. Q with marked vert. vi, v, s.t. d(vi,vs) =d}{ =
My = {rooted maps M with marked vert. vy, v, s.t. d(vi, ) = d}

> Let £§ - Q4 — QW) with |t; — t| — d = 2,4,... be the labeled
quad. with local minima t; on v;.




Qg = {rooted quadr. Q with marked vert. vi, vy, s.t. d(vi,vp) = d}i‘f
My = {rooted maps M with marked vert. vy, vy, s.t. d(vi,v2) =d}

> Let £, - Qg — QU with [t; — t| — d = 2,4,... be the labeled
quad. with local minima t; on v;.

» We have found a bijection (\U?{,t;)d o ‘~Il‘tjl7t2 1 Qg — Qg preserving
the distance between vi and v», mapping Np.x maxima w.r.t.

(t1, t2) to Nmax maxima w.r.t. (t1, ).
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» For simplicity let us set tg = t; = 0 (and d = 4). Then the label on
v is min{d(v,v1),d(v, v)}.




Proof of Wﬁ7t2(Qd) C MygUMy_4

» For simplicity let us set tg = t; = 0 (and d = 4). Then the label on
v is min{d(v,v1),d(v, v)}.

» The same holds in the planar map.




Proof of Wﬁ7t2(Qd) C MygUMy_4

» For simplicity let us set tg = t; = 0 (and d = 4). Then the label on
v is min{d(v,v1),d(v, v)}.

» The same holds in the planar map.




Proof of W¢ , (Qy) € My UMy 12
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Proof of \U‘;’M(Qd) C MygUMy_4

» For simplicity let us set tg = t; = 0 (and d = 4). Then the label on
v is min{d(v,v1),d(v, v)}.
» The same holds in the planar map.

» For each path of length d in Q there is a path of length d — 1 or d
in M.
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» Conclusions

» The Cori-Vauquelin—Schaeffer bijection and its generalizations are
ideal for studying “proper-time foliations” of random surfaces.

> Generalized CDT appears naturally as the scaling limit of random
planar maps with a fixed finite number of faces.

» Continuum DT (Brownian map?) seems to be recovered by taking
gs — 00.

> The relation to planar maps explains the mysterious loop-loop
identity in the continuum.
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» Conclusions
» The Cori-Vauquelin—Schaeffer bijection and its generalizations are
ideal for studying “proper-time foliations” of random surfaces.
> Generalized CDT appears naturally as the scaling limit of random
planar maps with a fixed finite number of faces.
» Continuum DT (Brownian map?) seems to be recovered by taking
gs — 00.
> The relation to planar maps explains the mysterious loop-loop
identity in the continuum.
» Outlook
> |s there a convergence towards a random measure on metric spaces,
i.e. analogue of the Brownian map? Should first try to understand
2d geometry of random causal triangulations.
> Does the loop-loop identity generalize? Is there some structure to
the associated symmetries?
> Various stochastic processes involved in generalized CDT. How are
they related?

Further reading: arXiv:1302.1763
These slides and more: http://www.nbi.dk/~budd/

Thanks for your attention!


http://www.nbi.dk/~budd/
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» A quadrangulations with
boundary length 2/ and an
origin.

> Applying the same prescription
we obtain a forest rooted at the
boundary.

» The labels on the boundary
arise from a (closed) random
walk.

> A (possibly empty) tree grows
at the end of every +-edge.

» There is a bijection

{ Quadrangulations with origin

I
and boundary length 2/ } © {(+, —)-sequences} x {tree}
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Disk amplitudes

wie.) = (7)) ey

w(g,!) = z(g)
.- w(g,x) = S —
w(g, x' = ———— A —

; ! z(g) 1—4z(g)x
Generating function \ Generating function
for unlabeled trees: /I \ for labeled trees:

1-/1-4g 1-y1-12g




Continuum limit

vV
e

| 1
o v w(g.x) =

m

z(g) =1

T
6g




Continuum limit

- E - 1
wg )= e X) = =

1—/1-12
z(g) = 62 £

» Expanding around critical point in terms of “lattice spacing” e:

g:gc(l—/\ez), z(g):zc(].—ZE), X:XC(].—XG)



Continuum limit

1 1
wig,x) =1 w(g,x) = N
WA(X) = —— WA(X) = ——
M= XYz M UX T Z
2(g) = 1—\2/2—4g 2(g) = 1-vi-12g \/61;11‘%
Z=+vA Z=+vN\

» Expanding around critical point in terms of “lattice spacing” e:
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Continuum limit

1 1
wle:x) =1 (e X) = A=
WA(X) = —— Wi(X) = ——

MY =X+ Z N 4
2(g) = 5 2(g) = 4%
Z=vVA Z=vN

» Expanding around critical point in terms of “lattice spacing” e:

g=g(1- /\62),

» CDT disk amplitude: Wix(X) =

z(g) = zc(1 - Ze),

X+VA

x = x:(1 — Xe)



Continuum limit

1

1—zx

w(g,x) =

Z=+A

» Expanding around critical point in terms of “lattice spacing” e:

g = gC(]- - /\62)7

» CDT disk amplitude: Wix(X) =
» DT disk amplitude with marked point: W;(X)

w.r.t. A to remove mark: Wi(X) = 5(X — %\/K) X+

z(g) = ze(1 - Ze),

1
X+VA

x = x:(1 — Xe)

1

X+

Integrate

5
S



