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Outline

I Introduction to the (generalized) CDT model of 2d gravity

I Bijection between labeled quadrangulations and labeled planar maps

I Generalized CDT solved in terms of labeled trees

I Two-point functions

I Bijection between pointed quadrangulations and pointed planar maps

I Loop identity of generalized CDT



Causal Dynamical Triangulations (CDT) [Ambjørn, Loll, ’98]

I CDT in 2d is a statistical system with partition function

ZCDT =
∑
T

1

CT
gN(T )

I ZCDT (g) is a generating function for the number of causal
triangulations T of S2 with N triangles.

I The triangulations have a foliated
structure

I May as well view them as causal
quadrangulations with a unique
local maximum of the distance
function from the origin.

I What if we allow more than one
local maximum?

t
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Generalized CDT
I Allow spatial topology to change in time.

Assign a coupling gs to each baby universe.

I The model was solved in the continuum by
gluing together chunks of CDT. [Ambjørn,

Loll, Westra, Zohren ’07]

I Can we understand the geometry in more
detail by obtaining generalized CDT as a
scaling limit of a discrete model?

I Generalized CDT partition function

Z (g , g) =
∑
Q

1

CQ
gNgNmax ,

sum over quadrangulations Q with
N faces, a marked origin, and Nmax

local maxima of the distance to the
origin.

−→
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N = 2000, g = 0, Nmax = 1



N = 5000, g = 0.00007, Nmax = 12



N = 7000, g = 0.0002, Nmax = 38



N = 7000, g = 0.004, Nmax = 221



N = 4000, g = 0.02, Nmax = 362



N = 2500, g = 1, Nmax = 1216



Causal triangulations and trees

I Union of all left-most geodesics
running away from the origin.

I Simple enumeration of planar trees:

#

{ }
N

= C (N), C (N) =
1

N + 1

(
2N
N

)
[Malyshev, Yambartsev, Zamyatin ’01]

[Krikun, Yambartsev ’08]

[Durhuus, Jonsson, Wheater ’09]

I Union of all left-most geodesics
running towards the origin.

I Both generalize to generalized CDT
leading to different representations.
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I Labeled planar trees: Schaeffer’s bijection.

I Unlabeled planar maps (one face per local
maximum).
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Labeled quadrangulations

Q(l) = {quadrangulations Q

rooted on an edge︸ ︷︷ ︸

with labels ` : {v} → Z, s.t. |`(v1)− `(v2)| = 1}
M(l) = {planar maps M w

︷ ︸︸ ︷
rooted on a corner

ith labels ` : {v} → Z, s.t. |`(v1)− `(v2)| = 0, 1}

Schaeffer’s rules define a map Ψ : Q(l) →M(l):
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Theorem 1 [Schaeffer, Miermont,...][Ambjørn, TB]

The map Ψ : Q(l) →M(l) is a bijection satisfying

I #{faces of Q} = #{edges of Ψ(Q)}
I #{local minima of Q} = #{faces of Ψ(Q)}
I #{local maxima of Q} = #{local maxima of Ψ(Q)}
I Max label on root edge of Q = label on root of Ψ(Q)

I Minimal label on Q = minimal label on Ψ(Q) minus 1

I Maximal label on Q = maximal label on Ψ(Q)
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Theorem 1−

The map Ψ− : Q(l) →M(l) is a bijection satisfying

I #{faces of Q} = #{edges of Ψ(Q)}
I #{local maxima of Q} = #{faces of Ψ(Q)}
I #{local minima of Q} = #{local minima of Ψ(Q)}
I Min label on root edge of Q = label on root of Ψ(Q)
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Cori–Vauquelin–Schaeffer bijection [Cori, Vauquelin, ’81][Schaeffer, ’98]

I Restrict to Q with single local minimum and minimal label 0.

I Labeling on Q is a distance to a distinguished vertex.

I Bijection between rooted pointed quadrangulations and rooted
labeled trees with minimal label 1.



Cori–Vauquelin–Schaeffer bijection [Cori, Vauquelin, ’81][Schaeffer, ’98]

I Restrict to Q with single local minimum and minimal label 0.

I Labeling on Q is a distance to a distinguished vertex.

I Bijection between rooted pointed quadrangulations and rooted
labeled trees with minimal label 1.



Cori–Vauquelin–Schaeffer bijection [Cori, Vauquelin, ’81][Schaeffer, ’98]

I Restrict to Q with single local minimum and minimal label 0.

I Labeling on Q is a distance to a distinguished vertex.

I Bijection between rooted pointed quadrangulations and rooted
labeled trees with minimal label 1.



Cori–Vauquelin–Schaeffer bijection [Cori, Vauquelin, ’81][Schaeffer, ’98]

I Restrict to Q with single local minimum and minimal label 0.

I Labeling on Q is a distance to a distinguished vertex.

I Bijection between rooted pointed quadrangulations and rooted
labeled trees with minimal label 1.



Cori–Vauquelin–Schaeffer bijection [Cori, Vauquelin, ’81][Schaeffer, ’98]

I Restrict to Q with single local minimum and minimal label 0.

I Labeling on Q is a distance to a distinguished vertex.

I Bijection between rooted pointed quadrangulations and rooted
labeled trees with minimal label 1.



Cori–Vauquelin–Schaeffer bijection [Cori, Vauquelin, ’81][Schaeffer, ’98]

I Restrict to Q with single local minimum and minimal label 0.

I Labeling on Q is a distance to a distinguished vertex.

I Bijection between rooted pointed quadrangulations and rooted
labeled trees with minimal label 1.



Assigning couplings to local maxima

I Assign coupling g to the local maxima of the
distance function.

I In terms of labeled trees:

5 4

44

4

4 4

5

3

3

5

5

I Generating function z0(g , g) for number of rooted labeled trees with
N edges and Nmax local maxima.

I Similarly z1(g , g) but local maximum at the root not counted.

I Satisfy recursion relations:

z1 =
∞∑
k=0

(z1 + z0 + z0)k gk = (1− gz1 − 2gz0)−1

z0 =
∞∑
k=0

(z1 + z0 + z0)k gk + (g− 1)
∞∑
k=0

(z1 + z0)k gk

= z1 + (g− 1) (1− gz1 − gz0)−1
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I Similarly z1(g , g) but local maximum at the root not counted.

I Satisfy recursion relations:

z1 =
∞∑
k=0

(z1 + z0 + z0)k gk = (1− gz1 − 2gz0)−1

z0 =
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(z1 + z0 + z0)k gk + (g− 1)
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k=0

(z1 + z0)k gk

= z1 + (g− 1) (1− gz1 − gz0)−1
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3g2z4
1 − 4gz3

1 + (1 + 2g(1− 2g))z2
1 − 1 = 0

I Phase diagram for weighted labeled trees (constant g):
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I The number of local maxima Nmax(g) scales with N at the critical
point,

〈Nmax(g)〉N
N

= 2
(g

2

)2/3

+O(g),
〈Nmax(g = 1)〉N

N
= 1/2

I Therefore, to obtain a finite continuum density of critical points one
should scale g ∝ N−3/2, i.e. g = gsε

3 as observed in [ALWZ ’07].

I This is the only scaling leading to a continuum limit qualitatively
different from DT and CDT.

I Continuum limit g = gc(g)(1− Λε2),
z1 = z1,c(1− Z1ε), g = gsε

3:

Z 3
1 −

(
Λ + 3

(gs
2

)2/3
)
Z1 − gs = 0

I Can compute:
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Two-point functions
I Continuum amplitude for surfaces with

root at distance T from origin.

I Rooted pointed quadrangulations with
distance t between origin and furthest
end-point of the root edge...

I ...are counted by z0(t)− z0(t − 1),
with z0(t) the gen. fun. for rooted
labeled trees with positive labels and
label t on root.

I Idem for z1(t), but local max at root
not weighted by g. They satisfy

z1(t) =
1

1− gz1(t − 1)− gz0(t)− gz0(t + 1)

z0(t) = z1(t) +
g− 1

1− gz1(t − 1)− gz0(t)

z1(0) = 0 z0(∞) = z0
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I Solution is (using methods of [Bouttier, Di Francesco, Guitter, ’03]):

z1(t) = z1
1− σt

1− σt+1

1− (1− β)σ − βσt+3

1− (1− β)σ − βσt+2
,

z0(t) = z0
1− σt

1− (1− β)σ − βσt+1

(1− (1− β)σ)2 − β2σt+3

1− (1− β)σ − βσt+2
,

with β = β(g , g) and σ = σ(g , g) fixed by

g(1 + σ)(1 + βσ)z1 − σ(1− 2g z0) = 0,

(1− β)σ − g(1 + σ)z1 + g(1− σ + 2βσ)z0 = 0.

I Continuum limit, g = gsε
3, g = gc(1− Λε2), t = T/ε, gives

∼ dZ0(T )

dT
= Σ3 gs

α

Σ sinh ΣT + α cosh ΣT(
Σ cosh ΣT + α sinh ΣT

)3

gs→∞−→ Λ3/4 cosh(Λ1/4T ′)

sinh3(Λ1/4T ′)
T ′ = g1/6

s T

I DT two-point function appears as gs →∞! [Ambjørn, Watabiki, ’95]
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Theorem 1−

The map Ψ− : Q(l) →M(l) is a bijection satisfying

I #{faces of Q} = #{edges of Ψ(Q)}
I #{local maxima of Q} = #{faces of Ψ(Q)}
I #{local minima of Q} = #{local minima of Ψ(Q)}
I Min label on root edge of Q = label on root of Ψ(Q)

I Minimal label on Q = minimal label on Ψ(Q)

t t

t +1

t - 1

t t

t +1

t +1

I Restricting Ψ− to Q with single minimum labeled 0

gives a bijection
between pointed rooted quadrangulations and pointed rooted planar
maps.
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I Ψ−(Q) has a face for each local maximum of Q. Within each face
the structure of Q is similar to CDT.

I Restricting Ψ− to Q with single minimum labeled 0 gives a bijection
between pointed rooted quadrangulations and pointed rooted planar
maps.



Two-point function for planar maps

I The generating function for Q with max label t on the root edge is
z0(t)− z0(t − 1)

I Therefore one obtains an explicit generating function

z0(t + 1)− z0(t) =
∞∑

N=0

∞∑
n=0

Nt(N, n)gNgn

for the number Nt(N, n) of planar maps with N edges, n faces, and
a marked point at distance t from the root.
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Two loop identity in generalized CDT

I Consider surfaces with two boundaries separated
by a geodesic distance D.

I One can assign time T1, T2 to the boundaries
(|T1 − T2| ≤ D) and study a “merging” process.

I For a given surface the foliation depends on
T1 − T2, hence also Nmax and its weight.

I However, in [ALWZ ’07] it was shown that the
amplitude is independent of T1 − T2.

I Refoliation symmetry at the quantum level in the
presence of topology change!

I Can we better understand this symmetry at the
discrete level?

I For simplicity set the boundary lengths to zero.
Straightforward generalization to finite boundaries.
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Qd = {rooted quadr. Q with marked vert. v1, v2, s.t. d(v1, v2) = d}
Md = {rooted maps M with marked vert. v1, v2, s.t. d(v1, v2) = d}

I Let Ld
t1,t2

: Qd → Q(l) with |t1 − t2| − d = 2, 4, . . . be the labeled
quad. with local minima ti on vi .

Qd

Q(l)

Q(l)

M(l)

M(l)

Md ∪Md−1

Ld
t1,t2

Ld
t′1,t

′
2

Ψ−

Ψ−

Ψd
t1,t2

Ψd
t′1,t

′
2

(Ψd
t′1,t

′
2
)−1
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I Let Ld
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: Qd → Q(l) with |t1 − t2| − d = 2, 4, . . . be the labeled
quad. with local minima ti on vi .

I We have found a bijection (Ψd
t′1,t

′
2
)−1 ◦Ψd

t1,t2
: Qd → Qd preserving

the distance between v1 and v2, mapping Nmax maxima w.r.t.
(t1, t2) to Nmax maxima w.r.t. (t ′1, t

′
2).



Proof of Ψd
t1,t2

(Qd) ⊂Md ∪Md−1

I For simplicity let us set t0 = t1 = 0 (and d = 4). Then the label on
v is min{d(v , v1), d(v , v2)}.

I The same holds in the planar map.

I For each path of length d in Q there is a path of length d − 1 or d
in M.
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Conclusions & Outlook
I Conclusions

I The Cori–Vauquelin–Schaeffer bijection and its generalizations are
ideal for studying “proper-time foliations” of random surfaces.

I Generalized CDT appears naturally as the scaling limit of random
planar maps with a fixed finite number of faces.

I Continuum DT (Brownian map?) seems to be recovered by taking
gs → ∞.

I The relation to planar maps explains the mysterious loop-loop
identity in the continuum.

I Outlook
I Is there a convergence towards a random measure on metric spaces,

i.e. analogue of the Brownian map? Should first try to understand
2d geometry of random causal triangulations.

I Does the loop-loop identity generalize? Is there some structure to
the associated symmetries?

I Various stochastic processes involved in generalized CDT. How are
they related?

Further reading: arXiv:1302.1763

These slides and more: http://www.nbi.dk/~budd/

Thanks for your attention!

http://www.nbi.dk/~budd/
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Including boundaries [Bouttier, Guitter ’09, Bettinelli ’11, Curien, Miermont ’12]

I A quadrangulations with
boundary length 2l

and an
origin.

I Applying the same prescription
we obtain a forest rooted at the
boundary.

I The labels on the boundary
arise from a (closed) random
walk.

I A (possibly empty) tree grows
at the end of every +-edge.

I There is a bijection
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Disk amplitudes

w(g , l) = z(g)l

w(g , x) =
∞∑
l=0

w(g , l)x l =
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1− z(g)x
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(
2l
l

)
z(g)l

w(g , x) =
1√

1− 4z(g)x

Generating function
for unlabeled trees:
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for labeled trees:
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Continuum limit
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I Expanding around critical point in terms of “lattice spacing” ε:

g = gc(1− Λε2), z(g) = zc(1− Zε), x = xc(1− X ε)

I CDT disk amplitude: WΛ(X ) = 1
X+
√

Λ

I DT disk amplitude with marked point: W ′Λ(X ) = 1√
X+
√

Λ
. Integrate

w.r.t. Λ to remove mark: WΛ(X ) = 2
3 (X − 1

2

√
Λ)
√

X +
√
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