
THE SCALING LIMIT OF
RANDOM OUTERPLANAR MAPS

ALESSANDRA CARACENI
SCUOLA NORMALE SUPERIORE DI PISA

29TH APRIL 2014

OUTERPLANAR MAPS

An outerplanar map is a planar map whose
vertices all belong to a single face.

OUTERPLANAR MAPS

An outerplanar map is a planar map whose
vertices all belong to a single face.

outerface

OUTERPLANAR MAPS

An outerplanar map is a planar map whose
vertices all belong to a single face.

outerface

Outerplanar maps we consider are
• simple

OUTERPLANAR MAPS

An outerplanar map is a planar map whose
vertices all belong to a single face.

outerface

Outerplanar maps we consider are
• simple
• rooted

SCALING LIMITSrandom plane trees
with n vertices

scale by n1/2

The CRT

SCALING LIMITSrandom plane trees
with n vertices

scale by n1/2

random rooted
planar maps with n
vertices

scale by n1/4

The CRT

The Brownian Map

SCALING LIMITSrandom plane trees
with n vertices

scale by n1/2

random rooted
planar maps with n
vertices

scale by n1/4

The CRT

The Brownian Map

random dissections

quadrangulations
with a boundary

SCALING LIMITSrandom plane trees
with n vertices

scale by n1/2

random rooted
planar maps with n
vertices

scale by n1/4

?

The CRT

The Brownian Map

random dissections

quadrangulations
with a boundary

SCALING LIMITSrandom plane trees
with n vertices

scale by n1/2

The CRT

random rooted
planar maps with n
vertices

scale by n1/4

The Brownian Map

random dissections

quadrangulations
with a boundary

SCALING LIMITSrandom plane trees
with n vertices

scale by n1/2

The CRT

Let be a random uniform rooted simple outerplanar map with n vertices, and denote by
 the graph distance on the set of its vertices . We have the following convergence in
distribution for the Gromov-Hausdorff topology:
!
!
!
!
where is the Brownian CRT of Aldous (the normalisation is that of Le Gall: consider
. as constructed from a normalised Brownian excursion).

(
V(Mn),

dgr√
n

)
(d)−−−−→

n→∞
7
√

2
9
· (Te, d)

dgr

(Te, d)

V(Mn)

(Te, d)

Mn

[C. 2014]

SCALING LIMITSrandom plane trees
with n vertices

scale by n1/2

The CRT
“Why are

outerplanar
maps like
trees?”

?

Let be a random uniform rooted simple outerplanar map with n vertices, and denote by
 the graph distance on the set of its vertices . We have the following convergence in
distribution for the Gromov-Hausdorff topology:
!
!
!
!
where is the Brownian CRT of Aldous (the normalisation is that of Le Gall: consider
. as constructed from a normalised Brownian excursion).

(
V(Mn),

dgr√
n

)
(d)−−−−→

n→∞
7
√

2
9
· (Te, d)

dgr

(Te, d)

V(Mn)

(Te, d)

Mn

[C. 2014]

PLAN OF PROOF
• There is a bijection between outerplanar maps with n
vertices and a class of bicoloured plane trees with n
vertices. [Bonichon, Gavoille, Hanusse, 05]

“Why are
outerplanar
maps like
trees?”

?

PLAN OF PROOF
• There is a bijection between outerplanar maps with n
vertices and a class of bicoloured plane trees with n
vertices. [Bonichon, Gavoille, Hanusse, 05]

“Why are
outerplanar
maps like
trees?”

?

PLAN OF PROOF
• There is a bijection between outerplanar maps with n
vertices and a class of bicoloured plane trees with n
vertices. [Bonichon, Gavoille, Hanusse, 05]

• We need a way to relate the “map” metric to the graph
distances on the corresponding tree.

“Why are
outerplanar
maps like
trees?”

?

PLAN OF PROOF
• There is a bijection between outerplanar maps with n
vertices and a class of bicoloured plane trees with n
vertices. [Bonichon, Gavoille, Hanusse, 05]

• We need a way to relate the “map” metric to the graph
distances on the corresponding tree.

• We develop an explicit algorithm that, given a bicoloured
plane tree and a vertex, computes the map-distance
between said vertex and the root.

“Why are
outerplanar
maps like
trees?”

?

PLAN OF PROOF
• There is a bijection between outerplanar maps with n
vertices and a class of bicoloured plane trees with n
vertices. [Bonichon, Gavoille, Hanusse, 05]

• We need a way to relate the “map” metric to the graph
distances on the corresponding tree.

• We develop an explicit algorithm that, given a bicoloured
plane tree and a vertex, computes the map-distance
between said vertex and the root.

• We apply the algorithm to a random tree and obtain that,
for “most” vertices u in the tree, their map-distance from
the root is ~c|u|.

“Why are
outerplanar
maps like
trees?”

?

PLAN OF PROOF
• There is a bijection between outerplanar maps with n
vertices and a class of bicoloured plane trees with n
vertices. [Bonichon, Gavoille, Hanusse, 05]

• We need a way to relate the “map” metric to the graph
distances on the corresponding tree.

• We develop an explicit algorithm that, given a bicoloured
plane tree and a vertex, computes the map-distance
between said vertex and the root.

• We apply the algorithm to a random tree and obtain that,
for “most” vertices u in the tree, their map-distance from
the root is ~c|u|.

• We need to extend estimates to all pairs of vertices. We
obtain, in fact, that in a random tree with n vertices
distances multiplied by c differ from map-distances by
more than with probability that is infinitesimal in n.ϵ

√
n

“Why are
outerplanar
maps like
trees?”

?

PLAN OF PROOF
• There is a bijection between outerplanar maps with n
vertices and a class of bicoloured plane trees with n
vertices. [Bonichon, Gavoille, Hanusse, 05]

• We need a way to relate the “map” metric to the graph
distances on the corresponding tree.

• We develop an explicit algorithm that, given a bicoloured
plane tree and a vertex, computes the map-distance
between said vertex and the root.

• We apply the algorithm to a random tree and obtain that,
for “most” vertices u in the tree, their map-distance from
the root is ~c|u|.

• We need to extend estimates to all pairs of vertices. We
obtain, in fact, that in a random tree with n vertices
distances multiplied by c differ from map-distances by
more than with probability that is infinitesimal in n.

 clim
n→∞

dGH

(
Ψ(τn)√

n
,
cτn√
n

)
= 0

 P(sup
u,v∈τn

|dM (u, v)− cdT (u, v)| ≥ ϵ
√
n) → 0

ϵ
√
n

“Why are
outerplanar
maps like
trees?”

?

“Why are
outerplanar
maps like
trees?”

?

THE BGH BIJECTION

“Why are
outerplanar
maps like
trees?”

?

THE BGH BIJECTION

“Why are
outerplanar
maps like
trees?”

?

THE BGH BIJECTION

“Why are
outerplanar
maps like
trees?”

?

THE BGH BIJECTION

“Why are
outerplanar
maps like
trees?”

?

THE BGH BIJECTION

THE BGH BIJECTION
u

v

“Why are
outerplanar
maps like
trees?”

?

THE BGH BIJECTION
u

v

We call v the “target” of u and write v=t(u).
t(u) is the fist vertex unrelated to u to be met
after u in a clockwise contour of the tree.

=t(u)

“Why are
outerplanar
maps like
trees?”

?

THE BGH BIJECTION
u

v=t(u)

There is a bijection between (simple, rooted)
outerplanar maps with n vertices and bicoloured
plane trees with n vertices, with a white rightmost
branch.

“Why are
outerplanar
maps like
trees?”

?

HOW DOES IT AFFECT DISTANCES .?
THE BGH BIJECTION

dM (u, v) = 1 < dT (u, v) = 3
u

v=t(u)

There is a bijection between (simple, rooted)
outerplanar maps with n vertices and bicoloured
plane trees with n vertices, with a white rightmost
branch.

“Why are
outerplanar
maps like
trees?”

?

THE CORE ALGORITHM

Let u be a vertex distinct from the
root; then a (map-)geodesic ending
at the root moves from u to
• p(u),

u

p(u)

THE CORE ALGORITHM

root

Let u be a vertex distinct from the
root; then a (map-)geodesic ending
at the root moves from u to
• p(u),
• or r(u),

u

p(u)

r(u)

THE CORE ALGORITHM

root

Let u be a vertex distinct from the
root; then a (map-)geodesic ending
at the root moves from u to
• p(u),
• or r(u),
• or t(u).

u

p(u)

r(u)

t(u)

THE CORE ALGORITHM

root

THE CORE ALGORITHM
white leaf

root

THE CORE ALGORITHM
white leaf

root

THE CORE ALGORITHM
white leaf

root

THE CORE ALGORITHM

go to p(u), erase u
white leaf

white non-leaf

root

THE CORE ALGORITHM

go to p(u), erase u
white leaf

white non-leaf

?

root

if u has a right sibling, move to
p(u), erase u (and descendants)

THE CORE ALGORITHM

go to p(u), erase u
white leaf

white non-leaf

?

root

if u has a right sibling, move to
p(u), erase u (and descendants)

THE CORE ALGORITHM

go to p(u), erase u
white leaf

white non-leaf

?

root

if u has a right sibling, move to
p(u), erase u (and descendants)

THE CORE ALGORITHM

go to p(u), erase u
white leaf

white non-leaf

?

root

if u has a right sibling, move to
p(u), erase u (and descendants)

THE CORE ALGORITHM

go to p(u), erase u
white leaf

if u has no right siblings, merge
p(u) with r(u); go to p(u)

white non-leaf

root

if u has a right sibling, move to
p(u), erase u (and descendants)

THE CORE ALGORITHM

go to p(u), erase u
white leaf

if u has no right siblings, merge
p(u) with r(u); go to p(u)

white non-leaf

root

if u has a right sibling, move to
p(u), erase u (and descendants)

THE CORE ALGORITHM

go to p(u), erase u
white leaf

if u has no right siblings, merge
p(u) with r(u); go to p(u)

white non-leaf

root

if u has a right sibling, move to
p(u), erase u (and descendants)

THE CORE ALGORITHM

go to p(u), erase u
white leaf

if u has no right siblings, merge
p(u) with r(u); go to p(u)

white non-leaf

black

root

if u has a right sibling, move to
p(u), erase u (and descendants)

if u has at least 2 right
siblings, go to p(u)

THE CORE ALGORITHM

go to p(u), erase u
white leaf

if u has no right siblings, merge
p(u) with r(u); go to p(u)

white non-leaf

black

root

if u has a right sibling, move to
p(u), erase u (and descendants)

if u has at least 2 right
siblings, go to p(u)

THE CORE ALGORITHM

go to p(u), erase u
white leaf

if u has no right siblings, merge
p(u) with r(u); go to p(u)

white non-leaf

black

root

THE CORE ALGORITHM

go to p(u), erase u
white leaf

if u has a right sibling, move to
p(u), erase u (and descendants)

if u has at least 2 right
siblings, go to p(u)

if u has no right siblings, merge
p(u) with r(u); go to p(u)

white non-leaf

black

if u has 1 right sibling,
merge it with p(u)

root

THE CORE ALGORITHM

go to p(u), erase u
white leaf

if u has a right sibling, move to
p(u), erase u (and descendants)

if u has at least 2 right
siblings, go to p(u)

if u has no right siblings, merge
p(u) with r(u); go to p(u)

white non-leaf

black

if u has 1 right sibling,
merge it with p(u)

root

THE CORE ALGORITHM

go to p(u), erase u
white leaf

if u has a right sibling, move to
p(u), erase u (and descendants)

if u has at least 2 right
siblings, go to p(u)

if u has no right siblings, merge
p(u) with r(u); go to p(u)

white non-leaf

black

if u has 1 right sibling,
merge it with p(u)

if u has no right siblings,
“jump”!

root

THE CORE ALGORITHM

go to p(u), erase u
white leaf

How many steps do we take??

if u has a right sibling, move to
p(u), erase u (and descendants)

if u has at least 2 right
siblings, go to p(u)

if u has no right siblings, merge
p(u) with r(u); go to p(u)

white non-leaf

black

if u has 1 right sibling,
merge it with p(u)

if u has no right siblings,
“jump”!

root

THE CORE ALGORITHM

go to p(u), erase u
white leaf

How many steps do we take??

if u has a right sibling, move to
p(u), erase u (and descendants)

if u has at least 2 right
siblings, go to p(u)

if u has no right siblings, merge
p(u) with r(u); go to p(u)

white non-leaf

black

if u has 1 right sibling,
merge it with p(u)

if u has no right siblings,
“jump”!

root

THE CORE ALGORITHM

go to p(u), erase u
white leaf

How many steps do we take??

if u has a right sibling, move to
p(u), erase u (and descendants)

if u has at least 2 right
siblings, go to p(u)

if u has no right siblings, merge
p(u) with r(u); go to p(u)

white non-leaf

black

if u has 1 right sibling,
merge it with p(u)

if u has no right siblings,
“jump”!

root

THE CORE ALGORITHM

go to p(u), erase u
white leaf

How many steps do we take??

if u has a right sibling, move to
p(u), erase u (and descendants)

if u has at least 2 right
siblings, go to p(u)

if u has no right siblings, merge
p(u) with r(u); go to p(u)

white non-leaf

black

if u has 1 right sibling,
merge it with p(u)

if u has no right siblings,
“jump”!

root

THE CORE ALGORITHM

go to p(u), erase u
white leaf

How many steps do we take??

“jumping” if u has a right sibling, move to
p(u), erase u (and descendants)

if u has at least 2 right
siblings, go to p(u)

if u has no right siblings, merge
p(u) with r(u); go to p(u)

white non-leaf

black

if u has 1 right sibling,
merge it with p(u)

if u has no right siblings,
“jump”!

root

THE CORE ALGORITHM

go to p(u), erase u
white leaf

How many steps do we take??

“jumping”

if u has a right sibling, move to
p(u), erase u (and descendants)

if u has at least 2 right
siblings, go to p(u)

if u has no right siblings, merge
p(u) with r(u); go to p(u)

white non-leaf

black

if u has 1 right sibling,
merge it with p(u)

if u has no right siblings,
“jump”!

root

THE CORE ALGORITHM

go to p(u), erase u
white leaf

How many steps do we take??

if u has a right sibling, move to
p(u), erase u (and descendants)

if u has at least 2 right
siblings, go to p(u)

if u has no right siblings, merge
p(u) with r(u); go to p(u)

white non-leaf

black

if u has 1 right sibling,
merge it with p(u)

if u has no right siblings,
“jump”!

root

THE CORE ALGORITHM

go to p(u), erase u
white leaf

How many steps do we take??

Start the algorithm on u; the
map-distance between u and the
root is |u| minus the number of

steps taken in “jump” state. if u has a right sibling, move to
p(u), erase u (and descendants)

if u has at least 2 right
siblings, go to p(u)

if u has no right siblings, merge
p(u) with r(u); go to p(u)

white non-leaf

black

if u has 1 right sibling,
merge it with p(u)

if u has no right siblings,
“jump”!

root

THE CORE ALGORITHM
white leaf

white non-leaf

black

How many steps do we take??

Start the algorithm on u; the
map-distance between u and the
root is |u| minus the number of

steps taken in “jump” state.

jump

input: (t, u, s0)

has height n

THE CORE ALGORITHM
white leaf

white non-leaf

black

How many steps do we take??

Start the algorithm on u; the
map-distance between u and the
root is |u| minus the number of

steps taken in “jump” state.

jump

input: (t, u, s0)
(t1, u1, s1)
(t2, u2, s2)
(t3, u3, s3)
(t4, u4, s4)

(tn, root, sn)

…

has height n

has height 0

THE CORE ALGORITHM
white leaf

white non-leaf

black

How many steps do we take??

Start the algorithm on u; the
map-distance between u and the
root is |u| minus the number of

steps taken in “jump” state.

jump

input: (t, u, s0)
(t1, u1, s1)
(t2, u2, s2)
(t3, u3, s3)
(t4, u4, s4)

(tn, root, sn)

…

has height n

has height 0

What if we take a random pair (t,u) as input??

THE CORE ALGORITHM
white leaf

white non-leaf

black

How many steps do we take??

Start the algorithm on u; the
map-distance between u and the
root is n minus the number of

steps taken in “jump” state.

jump

input: (t, u, s0)
(t1, u1, s1)
(t2, u2, s2)
(t3, u3, s3)
(t4, u4, s4)

(tn, root, sn)

…

has height n

has height 0

What if we take a random pair (t,u) as input??

THE CORE ALGORITHM
white leaf

white non-leaf

black

How many steps do we take??

Start the algorithm on u; the
map-distance between u and the
root is n minus the number of

steps taken in “jump” state.

jump

input: (t, u, s0)
(t1, u1, s1)
(t2, u2, s2)
(t3, u3, s3)
(t4, u4, s4)

(tn, root, sn)

…

has height n

has height 0

What if we take a random pair (t,u) as input??

The sequence of states s1,…,sn-2 is
a Markov chain!

THE CORE ALGORITHM
white leaf

white non-leaf

black

How many steps do we take??

Start the algorithm on u; the
map-distance between u and the
root is n minus the number of

steps taken in “jump” state.

jump

input: (t, u, s0)
(t1, u1, s1)
(t2, u2, s2)
(t3, u3, s3)
(t4, u4, s4)

(tn, root, sn)

…

has height n

has height 0

What if we take a random pair (t,u) as input??

• One needs to choose the right distribution on pairs
(geometric Galton-Watson trees, critical geometric Galton-Watson

tree conditioned to survive…)

ACHTUNG!

The sequence of states s1,…,sn-2 is
a Markov chain!

THE CORE ALGORITHM
white leaf

white non-leaf

black

How many steps do we take??

Start the algorithm on u; the
map-distance between u and the
root is n minus the number of

steps taken in “jump” state.

jump

input: (t, u, s0)
(t1, u1, s1)
(t2, u2, s2)
(t3, u3, s3)
(t4, u4, s4)

(tn, root, sn)

…

has height n

has height 0

What if we take a random pair (t,u) as input??

• One needs to choose the right distribution on pairs
(geometric Galton-Watson trees, critical geometric Galton-Watson

tree conditioned to survive…)
• The white rightmost branch poses some problems (one

may as well work with uniformly bicoloured trees,
and the conditioning will disappear in the limit)

ACHTUNG!

The sequence of states s1,…,sn-2 is
a Markov chain!

THE MARKOV CHAIN
⎛

⎜⎜⎜⎜⎝

! w0 w>0 b j
w0 1/4 1/4 1/2 0
w>0 1/16 5/16 5/8 0
b 3/32 7/32 7/16 1/4
j 1/8 1/8 1/4 1/2

⎞

⎟⎟⎟⎟⎠

What if we take a random pair (t,u) as input??

The sequence of states s1,…,sn-2 is
a Markov chain!

THE MARKOV CHAIN
⎛

⎜⎜⎜⎜⎝

! w0 w>0 b j
w0 1/4 1/4 1/2 0
w>0 1/16 5/16 5/8 0
b 3/32 7/32 7/16 1/4
j 1/8 1/8 1/4 1/2

⎞

⎟⎟⎟⎟⎠

π =
1

9
(1, 2, 4, 2)

stationary d
istribution

What if we take a random pair (t,u) as input??

The sequence of states s1,…,sn-2 is
a Markov chain!

For a certain random variable Xn=(tn,un), we let d(Xn) be the map-distance
between un and the root of tn. Then

!
where the convergence is almost sure.

Moreover, for all $\epsilon>0$ there exist positive n_{ϵ}, C such that,

THE MARKOV CHAIN
⎛

⎜⎜⎜⎜⎝

! w0 w>0 b j
w0 1/4 1/4 1/2 0
w>0 1/16 5/16 5/8 0
b 3/32 7/32 7/16 1/4
j 1/8 1/8 1/4 1/2

⎞

⎟⎟⎟⎟⎠

π =
1

9
(1, 2, 4, 2)

where the convergence is almost sure.

Law of Large Numbers

stationary d
istribution

What if we take a random pair (t,u) as input??

The sequence of states s1,…,sn-2 is
a Markov chain!

lim
n−→∞

d(Xn)

n
= 7/9

For a certain random variable Xn=(tn,un), we let d(Xn) be the map-distance
between un and the root of tn. Then

!
where the convergence is almost sure.

Moreover, for all $\epsilon>0$ there exist positive n_{ϵ}, C such that,

THE MARKOV CHAIN
⎛

⎜⎜⎜⎜⎝

! w0 w>0 b j
w0 1/4 1/4 1/2 0
w>0 1/16 5/16 5/8 0
b 3/32 7/32 7/16 1/4
j 1/8 1/8 1/4 1/2

⎞

⎟⎟⎟⎟⎠

π =
1

9
(1, 2, 4, 2)

ε > 0for all there is such that for all nε n ≥ nε

Large Deviations

stationary d
istribution

What if we take a random pair (t,u) as input??

The sequence of states s1,…,sn-2 is
a Markov chain!

P
(∣∣∣∣

d(Xn)

n
− 7

9

∣∣∣∣ ≥ ε

)
≤ e−Cn.

FINAL PROOFS
 WHERE DO WE STAND .?

Let be a random well bicoloured tree with n vertices, and let be its
(random) diameter; then for all

P
(
∃u ∈ τn s.t. |d(τn, u)− c|u|| ≥ εmax{diam(τn),

√
n}

)
−→ 0.

ε > 0
τn diam(τn)

FINAL PROOFS
 WHERE DO WE STAND .?

Let be a random well bicoloured tree with n vertices, and let be its
(random) diameter; then for all

P
(
∃u ∈ τn s.t. |d(τn, u)− c|u|| ≥ εmax{diam(τn),

√
n}

)
−→ 0.

ε > 0
τn diam(τn)

• Rerooting arguments are difficult to apply, but black vertices behave as the
root in some sense;

FINAL PROOFS
 WHERE DO WE STAND .?

Let be a random well bicoloured tree with n vertices, and let be its
(random) diameter; then for all

P
(
∃u ∈ τn s.t. |d(τn, u)− c|u|| ≥ εmax{diam(τn),

√
n}

)
−→ 0.

ε > 0
τn diam(τn)

• Rerooting arguments are difficult to apply, but black vertices behave as the
root in some sense;

• Black vertices are “dense” (i.e. there are no extremely large faces, with the
exception of the outerface); the same result is true about generic pairs of
vertices;

FINAL PROOFS
 WHERE DO WE STAND .?

Let be a random well bicoloured tree with n vertices, and let be its
(random) diameter; then for all

P
(
∃u ∈ τn s.t. |d(τn, u)− c|u|| ≥ εmax{diam(τn),

√
n}

)
−→ 0.

ε > 0
τn diam(τn)

• Rerooting arguments are difficult to apply, but black vertices behave as the
root in some sense;

• Black vertices are “dense” (i.e. there are no extremely large faces, with the
exception of the outerface); the same result is true about generic pairs of
vertices;

• Outerplanar maps have the same scaling limit as random well bicoloured
plane trees!

THANK YOU!

