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Let M, be a random uniform rooted simple outerplanar map with n vertices, and denote by
dgr the graph distance on the set of its vertices V(M) We have the following convergence in
distribution for the Gromov-Hausdortf topology:
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\_ where (T¢,d) is the Brownian CRT of Aldous (the normalisation is that of Le Grall: consider
\(‘Te, d) as constructed from a normalised Brownian excursion).
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Let M, be a random uniform rooted simple outerplanar map with n vertices, and denote by
dgr the graph distance on the set of its vertices V(M) We have the following convergence in
distribution for the Gromov-Hausdortf topology:
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where (T¢,d) is the Brownian CRT of Aldous (the normalisation is that of Le Grall: consider
\\(‘Te, d) as constructed from a normalised Brownian excursion).
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PLAN OF PROOF

o There is a bijection between outerplanar maps with n
vertices and a class of bicoloured plane trees with n
vertices. [Bonichon, Gravoille, Hanusse, 05]
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o We need to extend estimates to all pairs of vertices. We
obtain, in fack, that in a random kree with n vertices
distances multiplied by ¢ differ from map-distances by
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THE BGH BIJECTION

We call v the “tarqet” of u and write v=t(u). [
E(w) is the fist vertex unrelated to u to be meb  ° “w"\v are
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HOW DOES IT AFFECT DISTANCES ¢
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How many s&eps do we kalke?

Start the algorithm on u; the
mapmdxisﬁowwa between u and the
rook is n minus the number of
steps taken in ‘jump" state.
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What f we take a random pair (bu) as input?

The sequence of states s1,...,502 is
a Markov chain!

ACHTUNG!
o One needs to choose the right distribution on pairs
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THE MARKOV CHAIN

What f we take a random pair (bw) as input? ( r Wy  Wxo b J \
wy |14 174112 4

wso | 1/16 5/16 5/8 0

The sequence of states si,...,5n2 is b |3/32 7/32 7/16 1/4
a Markov chain! K j 1/8 1/8 1/4 1/2 )
skokionar distribubion
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Law of Large Numbers

For a certain random variable Xn=(bn,un), we let d(X.) be the map-distance
between u, and the root of b.. Then
. d(Xy)
lim

L —— 00 n
where the convergence is almosk sure.
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THE MARKOV CHAIN

What f we take a random pair (bu) as iaput?

The sequence of states si,...,5n2 is
a Markov chain!

distribution
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For a certain random variable Xn=(bn,un), we let d(X.) be the map-distance
between u, and the root of b.. Then
for all € > 0 bthere is n. such that for all n > n.
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FINAL PROOFS

WHERE DO WE STAND ¢

Let 7, be a random well bicoloured bree with n vertices, and let diam(r,) be its
(random) diameter; then for all € > 0
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o Black vertices are "dense” (Le. there are no extremely large faces, with the
exception of the outerface); the same result is true about generic pairs of
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Let 7, be a random well bicoloured bree with n vertices, and let diam(r,) be its
(random) diameter; then for all € > 0

P (Ju € 1, s.b. |d(7p, u) — clu|| > e max{diam(7,),v/n}) — 0.

e Rerooting arguments are difficult to apply, but black vertices behave as the
rook i some sense;

o Black vertices are "dense” (Le. there are no extremely large faces, with the
exception of the outerface); the same result is true about generic pairs of
vertices;

o Quterplanar maps have the same scaling Limit as random well bicoloured
plane trees:






