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Let     be a random uniform rooted simple outerplanar map with n vertices, and denote by 
    the graph distance on the set of its vertices        . We have the following convergence in 
distribution for the Gromov-Hausdorff topology: 
!
!
!
!
where         is the Brownian CRT of Aldous (the normalisation is that of Le Gall: consider   
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We call v the “target” of u and write v=t(u). 
t(u) is the fist vertex unrelated to u to be met 
after u in a clockwise contour of the tree.

=t(u)
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HOW DOES IT AFFECT DISTANCES .?
THE BGH BIJECTION

dM (u, v) = 1 < dT (u, v) = 3
u

v=t(u)

There is a bijection between (simple, rooted) 
outerplanar maps with n vertices and bicoloured 
plane trees with n vertices, with a white rightmost 
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How many steps do we take??

Start the algorithm on u; the 
map-distance between u and the 
root is n minus the number of 

steps taken in “jump” state.

jump

input: (t, u, s0)
(t1, u1, s1)
(t2, u2, s2)
(t3, u3, s3)
(t4, u4, s4)
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…
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has height 0

What if we take a random pair (t,u) as input??

• One needs to choose the right distribution on pairs 
(geometric Galton-Watson trees, critical geometric Galton-Watson 

tree conditioned to survive…)
• The white rightmost branch poses some problems (one 

may as well work with uniformly bicoloured trees, 
and the conditioning will disappear in the limit)
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P
(
∃u ∈ τn s.t. |d(τn, u)− c|u|| ≥ εmax{diam(τn),
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)
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ε > 0
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• Rerooting arguments are difficult to apply, but black vertices behave as the 
root in some sense;

• Black vertices are “dense” (i.e. there are no extremely large faces, with the 
exception of the outerface); the same result is true about generic pairs of 
vertices;

• Outerplanar maps have the same scaling limit as random well bicoloured 
plane trees! 
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