THE COMBINATORICS OF NON-COMMUTATIVE DISCRETE INTEGRABLE SYSTEMS

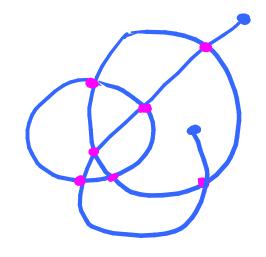
(P. Di Francesco, R. Kedem)

THE COMBINATORICS OF NON-COMMUTATIVE DISCRETE INTEGRABLE SYSTEMS

(P. Di Francesco, R. Kedem)

- 0. Positive Laurent Phenomenon de Discrete Integrability 1. Discrete Integrable systems: wonnup example
- 2. The non-commutative A, Q-system integrability, contined fractions, path solution 3. Friezes, and A, T-system integrability, GLz cancelian and solution 4. Non-commutative A, T-system definition, GLz cancelian and solution

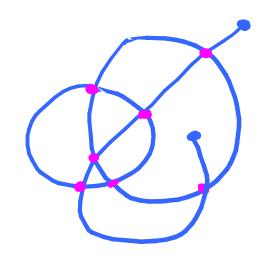
O. Discrete Integrability [BDG 04]



2-leg 4-valent plances maps wt g/innerventex canneded

• Bounday conditions
$$\{R_{-1}=0 \}$$
 $\{R_{\infty}=R=\frac{1-\sqrt{1-123}}{63}\}$

0. Discrete Integrability [BDG04]



2-leg 4-valent planes maps wt g/innerventex cannested

• Bounday conditions
$$\begin{cases} R_{-1} = 0 \\ R_{\infty} = R = \frac{1 - \sqrt{1 - 12g}}{6g} \end{cases}$$

Discrete evolution n=time EZ.

• Integrable:
$$4(Rn, Rn+1)=4(Rn-1, Rn)$$

modulo the equation (*)
 $4(x,y) = xy(1-g(x+y)) - x-y$
= conservation of charge in tree picture
• Exact solution $Rn = R \frac{1-x^{n+1}}{1-x^{n+2}} \frac{1-x^{n+3}}{1-x^{n+3}}$

Obis. Laurent Phenomenan

- · Discrete evolution $R_n = f(R_{n-1}, R_{n-2}, -R_{n-k})$ · (Cauchy) initial data (Ro, R1, -, R6-1)
- · Laurent phenomenan if $R_n = polynomial$ of $(R_0^{\pm 1}, \dots, R_{k-1}^{\pm 1})$

Obis. Laurent Phenomenan

- Discrete evolution Rn = f(Rn., Rn-z, --Rn-k)
 (Cauchy) initial data (Ro, R1, --, Rk-1)
- · Laurent phenomenan if $R_n = polynomial$ of (Ro", ---, Rk-1")
- "LP machine" = Cluster Algebras [FZ00] multi-dimensional evolution rule = given by a quiver, that evolves too

$$\times_k \times_k' = \prod_{i \neq j} \times_i + \prod_{i \neq j} \times_i$$
 Conjecture LP is >0 !

1. Discrete Integrable Systems: Warmup

- · evolution in d+1 dimension; discrete time n. EZ
- · conserved quantitées (De for D-space of scholians)
- · exactly solvable (action /angle variables)

Basic Example: A, Q-system

 $R_{n+1}R_{n-1}=R_n^2+1$ (Ro, R,) initial data

• reps thy Slz • fibonaccó seq • Chebysher 2nd kind

Cluster Algebra formulation

1/2

(Ro)

Cluster Algebra formulation
$$\iint_{2} \frac{1}{2} = \frac{1}{R_{1}}$$

$$\frac{\binom{R_{0}}{R_{1}} + \binom{R_{2}}{R_{1}}}{\binom{R_{2}}{R_{1}}} = \frac{R_{1}^{2} + 1}{R_{1}}$$

Cluster Algebra formulation

$$\iint_{2} \frac{1}{R_{2}} = \frac{1}{R_{2}} = \frac{1}{R_{1}} = \frac{1}{R_{2}}$$

$$\frac{1}{R_{2}} = \frac{1}{R_{2}} = \frac{1}$$

$$R_{n+1}R_{n-1} = R_n^2 + 1$$

Rn (Ro, R.) = Laurent Polynomial

LP is >0

INTEGRABILITY Rn+1 Rn-1 = Rn+1 (*)

Lemma
$$K_n = \frac{R_{n+1} + R_{n-1}}{R_n} = K$$
 is independent of nEZ

for R_n solution of (X)

Proof: compute
$$R_n K_n R_{n+1} = R_{n+1}^2 + R_n^2 + 1$$

 $R_n K_{n+1} R_{n+1} = R_{n+1}^2 + 1 + R_n^2$ I ged

Cor
$$R_n$$
 Satisfies a linear recursian relation
$$R_{n+1} - KR_n + R_{n-1} = 0$$

$$K = R_1 + \frac{1}{R_0} + \frac{R_0}{R_0 R_1} + \frac{R_0}{R_1}$$

NB: action-angle: $R_n = q_+ \lambda_+^n + q_- \lambda_-^n$

Def. 1.
$$F(t) = \sum_{n=0}^{\infty} t^n R_n$$

2. $y_1 = \frac{R_1}{R_0}$ $y_2 = \frac{1}{R_0 R_1}$ $y_3 = \frac{R_0}{R_1} \left(\frac{|X=y_1+y_2+y_3|}{1=y_1y_3} \right)$

We have:

$$F(t) = R_0 \frac{1 - t(y_2 + y_3)}{1 - t(y_1 + y_2 + y_3) + t^2}$$

Def. 1.
$$F(t) = \sum_{n=0}^{\infty} t^n R_n$$

2. $y_1 = \frac{R_1}{R_0}$ $y_2 = \frac{1}{R_0 R_1}$ $y_3 = \frac{R_0}{R_1} \left(\frac{|X = y_1 + y_2 + y_3|}{1 = y_1 y_3} \right)$

We have:

$$F(t) = R_0 \frac{1 - t(y_2 + y_3)}{1 - t(y_1 + y_2 + y_3) + y_1 y_3 t^2} = \frac{R_0}{1 - t y_1}$$

$$1 - t y_2$$

$$1 - t y_3$$

2.
$$y_1 = \frac{R_1}{R_0}$$
 $y_2 = \frac{1}{R_0 R_1}$ $y_3 = \frac{R_0}{R_1}$ $\begin{pmatrix} |X = y_1 + y_2 + y_3| \\ 1 = y_1 + y_3 \end{pmatrix}$

We have:

We have:

$$F(t) = R_0 \frac{1 - t(y_2 + y_3)}{1 - t(y_1 + y_2 + y_3) + y_1 y_3 t^2} = \frac{R_0}{1 - t(y_1 + y_2 + y_3) + y_1 y_3 t^2}$$

POSITIVE LAURENT PHENOMENON:

Rn = partition function of paths 0 > 0, 2n stops on
$$\{0,1,2,3\}$$

Ro with weights $\{w_{i\rightarrow i+1} = 1\}$
 $\{w_{i\rightarrow i-1} = y_i\}$
 $\{w_{i\rightarrow i-1} = y_i\}$

2. Non-Commutative A, Q-system

$$R_{n+1}R_{n}^{-1}R_{n-1} = R_{n} + R_{n}^{-1}$$
 (**) (Kontsprich)
$$(R_{0}, R_{1}) \text{ initial data}$$

INTEGRABILITY:

[Lemma] The are 2 can served quarktics modific(**)

(1)
$$C_n = R_{n+1}^{-1} R_n R_{n+1} R_n^{-1} = C$$

(2) $K_n = (R_{n+1} + C R_{n-1}) R_n^{-1} = K$
 $= R_n^{-1} (R_{n+1} C + R_{n-1})$

Proofs: Rn+1RnRn==Rn+Rn (**)

(1) $C_{h} = R_{n+1} R_{n} R_{n+1} R_{n} C_{h-1} = R_{n} R_{n-1} R_{n} R_{n-1}$ $R_{n+1} C_n R_{n-1} = R_n (R_n + R_n^{-1}) = R_n^2 + 1$ $R_{n+1} C_{n-1} R_{n-1} = (R_n + R_n^{-1}) R_n = R_n^2 + 1$ $\int_{-\infty}^{\infty} q_{n-1} dx$

Ch=Ch=1=C => (1) Rn Rn+1 = Rn+1 C Rn => Rn+1 Rn == Rn Rn C (2) $R_{n+1} C R_{m+1} = R_n^2 + 1$

(2) $K_n = (R_{n+1} + CR_{n-1})R_n^{-1} = L_n = R_n^{-1}(R_{n+1}C + R_{n-1})$ Rn+1 Kn Rn = Rn+1 + Rn+1 Rn+1 Ln+1 Rn = $\frac{R_{n+2}CR_n + R_n^2}{R_{n+1}^2 + 1}$ qcd

(1) gives quasi-commutation relations Rn Rn+1 = Rn+1 C Rn

(2) gires linear recursion reletions:

 $R_{n+1} - KR_n + CR_{n-1} = 0$ The initial eqn (xx) can be recast into $R_{n+1} - R_{n-1} = R_n^2 + 1$

Pb = no action - angle variables. Solution? (no notion of a root of a NC polynomial).

Def: 1.
$$F(t) = \sum_{i=1}^{\infty} t^{i} R_{i}$$
2. $y_{1} = R_{1}R_{0}^{-1} y_{2} = R_{1}^{-1}R_{0}^{-1} y_{3} = R_{1}^{-1}R_{0}$

$$F(t)R_{0} = (1 - t(y_{1} + y_{2} + y_{3}) + y_{3}y_{1}t^{2})^{-1}(1 - t(y_{2} + y_{3}))$$

NC continued fraction expansion.

Def: 1.
$$F(t) = \sum_{i=1}^{\infty} t^{i} R_{i}$$

2. $y_{1} = R_{1}R_{0}^{-1} y_{2} = R_{1}^{-1}R_{0}$
 $(C = y_{3}y_{1})$
 $(K = y_{1} + y_{2} + y_{3})$
 $(K = y$

$$\Rightarrow$$
 R_nR_o = partition function of paths $0 \Rightarrow 0$, $2n$ steps, on $\{0,12,3\}$ with NC weights $\{w_{i} \Rightarrow i_{+1} = 1\}$
 $\{w_{i} \Rightarrow i_{-1} = y_{i}\}$
 $\{w_{i} \Rightarrow i_{-1} = y_{i}\}$
 $\{w_{i} \Rightarrow i_{-1} = y_{i}\}$

3. Friezes and A, T-system

· quantum spon chains

· Coxeter-Conway

$$(j,k-1)$$

$$j$$

$$(j-1,k)$$

initial data

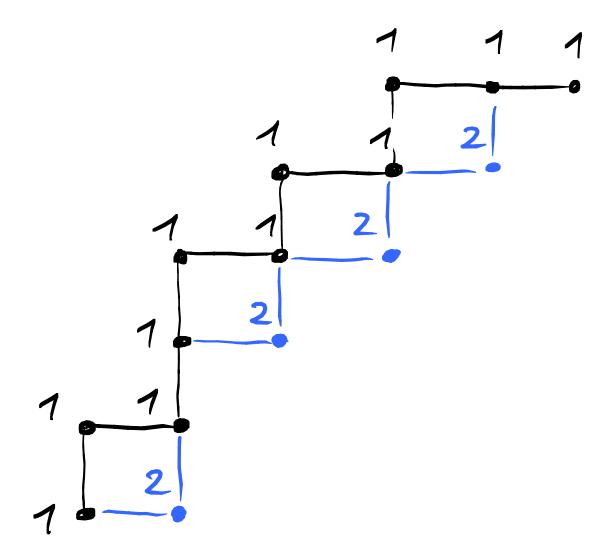
ath (j.kj) jez

Tjikj = tj (jez)

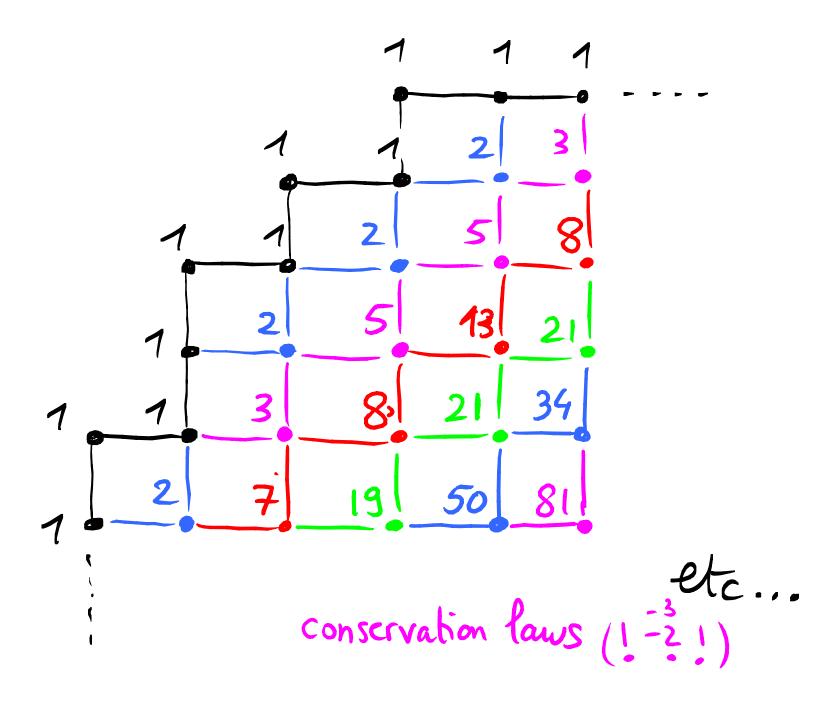
EX

.

EX



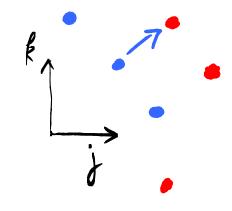
EX



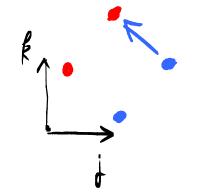
INTEGRABILITY:

Two families of conservation laws:

$$T_{j-1,k+1} - \gamma_{j-k} T_{j,k} + T_{j+1,k-1} = 0$$

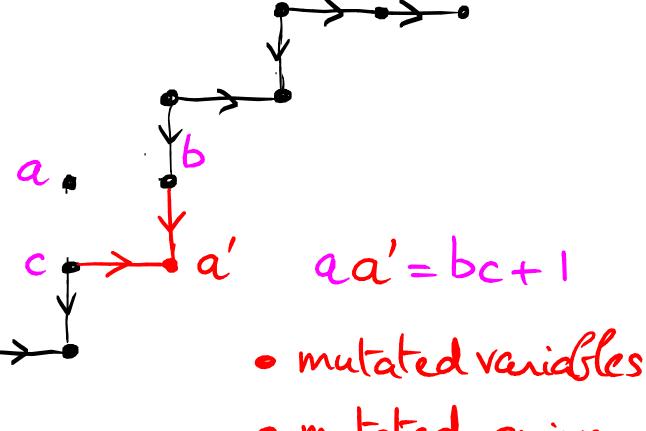


$$T_{j-1,k-1} - \delta_{j+k} T_{j,k} + T_{j+1,k+1} = 0$$



Cluster Algebra Formulation · initial quiver · initial variables Cluster Algebra Formulation aa'=bc+1

mutated variables Cluster Algebra Formulation



· mutated quiver

4. Non-Commutative Frieze/A-T-system

> NC A, T-SYSTEM

$$T_{j,k+1} = (T_{j,k-1})^{-1} + T_{j-1,k} T_{j,k-1} T_{j+1,k}$$

INITIAL DATA (doubled!)

(1) path
$$(j,k_j)_{j\in\mathbb{Z}}$$
 $j|k_{jm}-k_j|=1$.

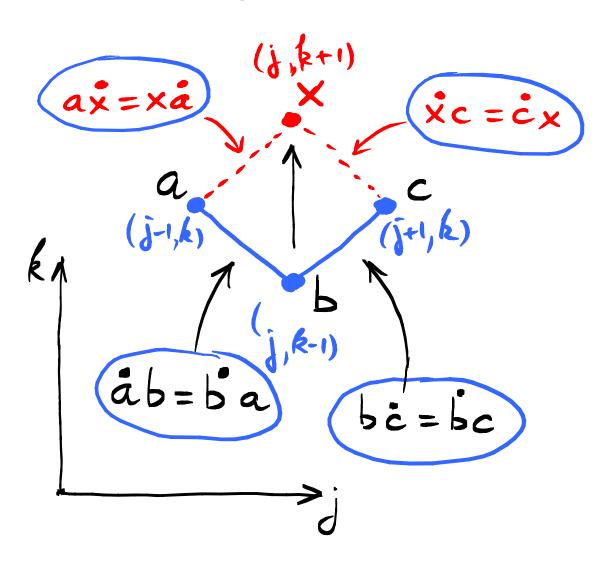
(2)
$$T_{j,R_{j}} = t_{j}$$

$$\begin{cases} \int_{J_{j}}^{J_{j}} t_{j-1} t_{j} = (t_{j})^{2} t_{j-1} \\ \int_{J_{j}}^{J_{j}} t_{j} = t_{j} (t_{j-1})^{2} \end{cases}$$

$$x = (b)^{-1} + ab^{-1}c$$

$$xb=1+ac$$

elementary move



INTEGRABILITY

THM) There are 2 families of "conserved quantihies" module (*****):
$$\Gamma_{jk} = T_{j+1,k+1}T_{jk} + (T_{jk})^T T_{j+1,k+1} = \Gamma_{j-k}$$

$$\Delta_{jk} = T_{jk}^T T_{j+1,k+1} + T_{j-1,k-1} (T_{jk})^T = \Delta_{j+k}$$

POSITIVE LAURENT PROPERTY

THM) The solution Tjk of (****) with arbitrary initial data is a possible Lawrent Polynamial of the It; tiliez

NB The conserved quantities imply linear recursia relations:

$$T_{j+1,k+1} - L_{j-k} T_{j,k} + T_{j-1,k-1} = 0$$

$$T_{j+1,k-1} - T_{jk} \Delta_{j+k} + T_{j-1,k+1} = 0$$

EXACT SOLUTION I: Connexion

Def
$$a,b \in A$$
; $U,V \in GL_2(A)$:
$$U(a,b) = \begin{pmatrix} 1 & 0 \\ b^{-1} & a(b^{-1}) \end{pmatrix}$$

$$V(a,b) = \begin{pmatrix} ab^{-1} & (b^{-1}) \\ 0 & 1 \end{pmatrix}$$

Lemma
$$a = (b)^{-1}a = (b)^{-1}a = and b = (b)^{-1}a$$

then $V(a,b) \cup (b,c) = U(a,x) \vee (x,c)$
 $(\Rightarrow) \times = (b)^{-1} + ab = (b)^{$

and more over: a $a' \times c$ $a' \times a'' \quad and \quad \times c'' = (c)^{-1} \times^{a}$

Lemma if $ab^{-1}=(b^{-1})^{-1}a$ and $b^{-1}c=c(b^{-1})^{-1}$ then $\{x=(b^{-1})^{-1}+ab^{-1}c & b^{-1}=x^{-1}+a^{-1}(x^{-1})^{-1}c^{-1}\}$ $\Rightarrow xb^{-1}=1+ac^{-1}$ and moreover $a^{-1}x=x^{-1}(a)^{-1}$ and $xc^{-1}=(c)^{-1}x^{-1}$

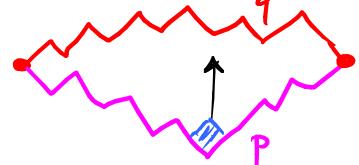
With the usual I to TT relations, the NCA, T-system is equivalent to:

Tj.k+1 Tj.k-1 = 1 + Tj-1,k Tj+1,k

SUMMARY

· U, V form a flat GL, let)
connexion on the solutions of (****)

· products are independent of paths w/fixed ends



go from p to T by iteration of VU >UV

"box addition/subtraction".

SOLUTION

Let Tik=solution of (****) w/fixed mitial data along a path p, with assignments (tj)

$$T_{j,k} = [M_{p}(j_{j},j_{j})]_{j,l} t_{j,l}$$

$$M_{P}(j_{0},j_{1})=\prod_{j=0}^{d_{1}}\binom{U}{V}$$

initial Conditions Proof We just have to check the formula on the red path

> (UU..U VV..V), tj.
Ulawa triang. Vupper triang. = (UU.-U) (VV--V) 11 tj. $(U = \begin{pmatrix} 1 & 0 \\ \times & \varkappa \end{pmatrix}) \xrightarrow{V_{11}V_{11}...V_{n}} t_{j1}$ $(T_{j,k} t_{j1}^{-1} t_{j1}^{-1})$ = Tj,k

EXACT SOLUTION II: NC Networks

associate "chips"

of directed graph

matrix element

$$= edge weight$$
 $V(a,b)$
 $= edge weight$
 $V(a,b)$
 $= edge weight$
 $= edge weight$

Product of UV = concatenation of chips with compatible face labels = NC NETWORK

[U(a₁a₂) U(a₂a₃). - V(a_ja_{j+1})...] e_m = partition function of paths e > m on the associated NC network. (a₁a₂a₃- Zajn:)

Cor Tj,k.tj = partition function of paths 1 - 1 on the concatenation graph corresponding to the projection of (jk) onto p.

EXAMPLE NC NETWORK t1 t2 t3 t3 t5 t, t2 (t4)-1 (t2)"t3t;"t5 $(t_{2}^{\bullet})^{-1}t_{3}^{-1}(t_{4}^{\bullet})^{-1}$

EXACT SOLUTION III: NC DIMERS

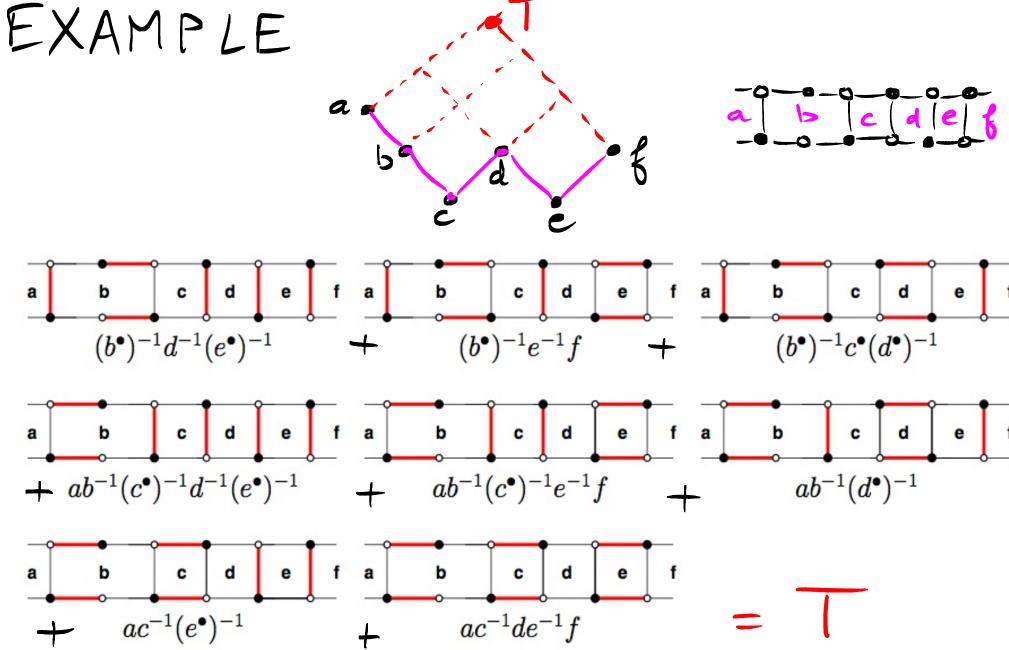
Collecting weights:

THM Tjk
$$t_j^-$$
 = partition function for NC dimers
on the ladder graph of the projection of (jk) onto p
w/ face weights = 1 unless:
 $a^ a^ a^-$

Rem = bijective weights.

Arbitrary P = $V(ab)V(b,c) \rightarrow a b c$ new hexagonal faces in the ladder graph $U(a,b)U(b,c) \rightarrow a \mid b \mid c$ NC DIMERS on square/hixa-gen ladder-graph. NC Network paths (>>

(THM) The solution Tike til for abitary P is the partition function for dimers on the square/ hexagon ladder graph of the projection of (jk) anto p, with hexaganal face weights = 1 unless a | a a | a | a^{-1} $(a)^{-1}$ $(a)^{-1}$ a



CONCLUSION

- NC world = very different/quasideterminants

 paths are natural NILP? GV?

 bijective weights
 - · NC+integrable -> exact solutions paths / dimers = "fermions".

Generalizations?

- other baindary canditions [in progress] [Berenteh
 NC cluster algebras / from surfaces? Retakt]
 NC T-systems?

[arXiv:0909.0615] [arXiv:1402.285]]